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From Editors

It is well known that the variable structure control is now recognized as one of the powerful
robust tools for solving control problems of uncertain linear and nonlinear dynamical systems
subject to parameter perturbations, unmodeled dynamics, external disturbances, and time-delay
effects.

Several fundamental monographs and books have been written on the various aspects of the
variable structure control and time-delay systems, and their world wide applications in various
industrial and manufacturing systems since 1960’s. Recent advances and some new results on
the stability analysis and robust sliding mode control of multivariable uncertain dynamical
systems with and without time-delay are systematically presented in this book, which adjoins
the mentioned series. The materials of this book are original, which are obtained by the author
in the past decade in Istanbul Technical University. The book is not only a collection of the
authors’ original papers, but also the latest results on variable structure theory and time-delay
systems obtained by other authors and colleagues are systematically used in general framework
of control theory. The author actively collaborated with our world WSEAS Academy and is the
co-chairman of the WSEAS Turkish leg:
http://www.wseas.org/chapters/europe/turkey/control/index.html.

From the brief historical outline of development of variable structure control presented in the
preface of this book, it can be seen that the author has made significant contributions to the
variable structure control as a member of the second Soviet generation of the researchers of this
control field:
1) Parameters optimization of variable structure control constrained by stability and
sliding mode existence conditions
2) Development of new set of pneumatic variable structure P, PI, PID, universal,
multistructure, adaptive controllers and systems confirmed by 27 Soviet patents
3) Industrial confirmations and applications of sliding mode controllers with chattering
in process control actuated by membrane control valves for the first time.

In general, the book presents the recent advances in the modern position of the variable
structure control and time-delay systems. The book has been written in a clear and plain
language.

The presentation of the signal copy of this book as a keynote lecture was successfully held at
11th WSEAS International Conference on AUTOMATIC CONTROL, MODELLING and
SIMULATION (ACMOS '09) http://www.worldses.org/programs/istanbul-joint-program-
2009.doc in Istanbul and appreciated by the international audience:

I think that the scientific-technological level of the book is high. This book will be useful for
researchers, engineers, graduate students, and teachers on control and systems engineering.
This book can be ordered electronically by www.wseas.org

e Professor Nikos Mastorakis
President of WSEAS
www.wseas.org/mastorakis

e Professor, Technical University of Sofia,
http://elfe.tu-sofia.bg/staff.htm
http://elfe.tu-sofia.bg/curriculum4.htm




e Honorary Professor, University of Cluj,
ROMANIA
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o Prize of Excellence from Romanian Academy of Science,
Bucharest, ROMANIA
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o Professor at the ASEI (Military Institutes of University Education),
Hellenic Naval Academy, GREECE
http://www.hna.er
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Preface

A key issue in the analysis and design of feedback control systems is the stability and
robustness of the resulting closed-loop system. That is the problem of controlling uncertain
linear and nonlinear systems without or with time-delay subject to external disturbances is a
basic topic that is situated in the center of interest of control researches and engineers. One
approach to solving this problem is by using principles and methods of variable structure
control.

A. Variable Structure Control

Now, the sliding mode control approach is recognized as an efficient tool to design of robust
controllers for complex, nonlinear and high order linear plants and time-delay systems with
parameter perturbations and external disturbances. Variable structure control systems are
characterized by a suit of feedback control algorithms and a decision rule. The decision rule,
termed the switching function, has its input the measurable state variables and produces as an
output the particular feedback linear or nonlinear controller that should be used at that instant in
time. In other words, a variable structure system consists of a set of linear or in general
nonlinear subsystems with proper switching function logic. Such systems also may be called
multi-structure systems. The resulting control action is a discontinuous function of the system
states, reference model errors, disturbances and etc. Briefly, variable structure system is
characterized by discontinuous control action which changes structure upon reaching a set of
switching surfaces. Well known relay or on-off or bang-bang regulator is simple discontinuous
controller which is widespread because of its easy implementation and efficiency of control
hardware. The basic design concept for the majority of variable structure systems rests upon
enforcing sliding modes. The well known sliding mode control methodology is a particular type
of variable structure systems.

Sliding mode is a principle operational mode in variable structure control. Practically all design
methods for variable structure systems are based on the deliberate introduction of sliding modes
which have played an exceptional role both in design and in practical applications. In sliding
mode control, variable structure controller is designed to drive and then constrain the system
state to lie with in a neighborhood of the switching function. Therefore, the sliding surface is
reached in finite time and then on sliding manifold is generated an asymptotically stable sliding
motion. There are a number of advantages of sliding mode control approach: robustness or low
sensitivity to plant parameter variations, external disturbances, model uncertainties, etc, which
eliminates the necessity of exact modeling; easy implementation; system order reduction
property; the possibility of stabilizing some non-linear systems which are not stabilizable by
continuous state feedback lows; etc. Sliding mode control enables the decoupling of the overall
system motion into independent partial components of lower dimension and as a result, reduces
the complexity of feedback control design. Sliding mode design principles are based on two
stage procedures. Both of them are concerned with stability or attractivity concepts. The first
considers the design of the desired dynamics for a system (n-m)-order by proper choice of a
sliding manifold s(t)=0. The second consists of designing a controller which will ensure the
sliding mode, and thus, the desired performance is attained and maintained. Sliding mode
control implies that control actions are discontinuous state or output function which may easily
be implemented by convential elements of automation, for example on-off or relay elements,
power converters, pneumatic modules, etc. Finally, analysis of the discontinuous signal applied
to the system can be used as a technique to model the signal activity required in order to
achieve the ideal performance from the system. Due to these properties, variable structure
control has been proved to be applicable to a wide range of problems in oil-chemical process
control, aircraft and missile guidance systems, pneumatic and hydraulic systems, time-delay
systems, mechanical systems, robotic systems, electric drives, nuclear reactors, vehicle and
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motion control etc. Enforcing sliding motion in this manifold is equivalent to a stability
problem of the m-order system.

The first stage is often termed sliding manifold design problem and the second sliding mode
existence problem. The conditions ss <0 in general is referred to us as a reaching condition for
the state to reach the sliding manifold s(t)=0 after a finite time for arbitrary initial conditions. A
time response of the system consists of two phases: 1) hitting or reaching phase and the 2)
sliding phase.

In general, the theory of variable structure systems has made several important contributions to
the problem of robust stabilization. Now, it is suitable to continue the presentation of brief
historical outline of emergence, advances and formation of the basic ideas and concepts of the
variable structure systems and sliding mode control.

Variable structure control systems with sliding mode was first proposed, introduced and
elaborated in the Soviet Union by Emelyanov in the 1950s and advanced by his several co-
researches of first generation: Utkin, Taran, Kostyleva, Shubladze, Ezerov, Dubrovsky,
Khabarov, Fedotova, Behrmant, Drazenovic, Bakakin, Dudin, Buyakas, Shigin, Grittsenko,
Kortnev, Zhiltsov, etc [1]-[6] and in parallel by Barbashin and his several co-researches:
Gerashcenko, Tabueva, Eidinov, Bezvodinskaya, etc [7].

The extensive investigation and establishing of variable structure theory by Emelyanov and
Utkin etc. group’s took place in the division of the Research Institute of Control Sciences (IAT)
in Moscow headed by academician B.N. Petrov [4] where Emelyanov and Utkin were awarded
in 1972 by highest scientific state award in the former USSR Lenin Prize for the discovery of
the variable structure principles. In those years variable structure systems were extensively and
systematically investigated under directions of Petrov, Emelyanov, Utkin, etc. by the several
groups in the center and various regions of the USSR. The author of this book was extensively
collaborated with the Moscow’s groups and etc in 1970-1991 until the fall of the USSR. This
period can be referred to us as second period of advances of theory of the variable structure
control and their first industrial applications by the several co-researches of the second
generation. In this period an extensive effort has been made to improve dynamic performances
of linear, some times non-linear system by using the concept of the variable structure control.
Roughly speaking, a variable structure controller uses a number of linear feedback gains
according to the representative point of the state space. Once the representative point reaches
the sliding manifold the system dynamics is improved and the control will force the state to
remind in it. The special operation mode is called the sliding mode and the conditions required
to achieve it are called the hitting or reaching conditions. Here, it was noted that an
asymptotically stable closed loop system could be formed from two unstable linear systems by
combining useful properties of the composite subsystems. Furthermore, the system may be
designed to possess new properties not present in any of the composite structures.

In first pioneering monograph [1], the plant considered was a linear second order system
presented in canonical phase variables from. This approach later is extended to the general form
advanced by [8] and [9] published in the first period of investigations of the variable structure
control until 1970. Then in the second period of the advances of the theory of variable structure
systems, the systems of the general state space form were considered by [8]-[10].

Formation of well known conventional or classical theory of linear feedback control systems in
1950’s, originated by well-known early historical Polzunov water level and flow regulator in
steam engine tank (Russia, 18 century) and Watt steam engine with centrifugal fly-ball
governor (Britannia, 18 century)-Polzunov-Watt feedback principle-and fundamental works of
Maxwell, Vyshnegradsky and Stodola, etc (19 century), on the one hand, and existence of
fundamental works by Lyapunov [11], Andronov, Vitt and Khaikin [12], Tsypkin [13], Flugge-
Lotz [14] etc on the other hand, had prepared the necessary background for the emergence of
the variable structure principles.
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Variable structure systems has found application in control engineering of wide range of
problems in electric drives and generators, oil-chemical process control, vehicle and motion
control [9].

A set of new invented pneumatic variable structure controllers and systems for automation of
various types of plants of chemical, oil-chemical industries was brought to production status
and forty two sets have been installed in six plants in the USSR [15]-[56].

In the petroleum, petrochemical and some other industries, there exists a wide class of
processes that feature instability in critical (economically advantageous) modes, have non-
stationarities and disturbances, numerous uncontrollable factors, interrelated controlled
parameters and delays. In particular, the study of the dynamic of catalytic processes (alkylation
by sulfuric acid is alkyl benzene production or copolymerization in production of butyl rubber)
and qualitative analysis of temperature stability of the non-linear models of chemical reactors
have shown that the state plane of the plant has two or more singular points and always has at
least one saddle point which is indicative of the substantial non-linearity in plant equations. The
study of dynamics of catalytic process control systems demonstrates that the domain of initial
conditions allowing linear controllers to maintain stability of non-linear processes is rather
bounded. In the critical modes, the linear process control becomes impracticable. If process
parameters vary over a wide range, the linear systems cannot provide high-quality control. For
the processes under consideration the efficiency of control algorithms with deliberately induced
sliding modes has been theoretically substantiated.

The Institute NIPINeftekhimavtomat in collaboration with the Institute of Control Sciences has
designed a new “Universal set of pneumatic variable-structure devices” intended for the lower
level of automation hierarchy of a wide class of processes in various industries where
pneumatics has become accepted [48], [54] and [56].

Notably, unlike the set SUPS (Utkin and Kostyleva, 1981 [57]) where sliding motion is used
only in data handling units, in the new set sliding motions may be induced for the first time in
the main loops of systems controlling a wide variety of processes. This is due to the fact that for
majority of petroleum and petrochemical processes the time constants are of the order of
minutes, while the USEPPA (The set of pneumatic elements including controllers and units
performing elementary operations such as summing, amplification, integration etc. which is
produced in the USSR) elements allows one to generate self-oscillations at much higher
frequencies, and the diaphragm actuators are known to be basically able to operate in these
modes.

The Research Institute NIPI Neftekhimavtomat has brought the new set to the production
status, and a batch of 42 complete sets has been installed at six Soviet plants for control of
chemical processes.

The experience gained during several years of their operation in industrial environment, has
demonstrated that these systems are more stable, reliable and maintainable, and in industrial
environment have 2 to 6 times better control performance indices (dynamic accuracy,
maximum overshoot, steady state error, settling time, etc.) as their linear counterparts. The
aggregate economical efficiency of industrial application of pneumatic variable structure
controllers set was about one million soviet ruble in 1981.This work is awarded by first class
certificate of Institute of Control Sciences AN SSSR and confirmed by its director academician
V.A. Trapeznikov.

This is the first industrial confirmation of the existence and usefulness of the sliding mode.
However, usage of sliding mode idea did not appear outside of USSR until the mid of 1970s
when a book by Itkis (1976) [58] and survey paper by Utkin (1977) [10] were published in
English. Later a survey paper DeCarlo, Zag and Matthews [59] provides a good tutorial
introduction.

Since 1980s more and more researches in various aspects of sliding mode control has been
done world wide by Young (1978) [60], Slotine and Sastry (1983) [61], Izosimov, Matic Utkin,
Sabanovic, (1978) [62], Kaynak, Harashima, and Hashimoto (1984) [63], Sira-Ramizer, (1988)
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[64], Fu (1991) [65], Sira-Ramizer, (1993) [66], Elmali and Olgac (1993) [67], Itkis (1976)
[68], Drazenovic (1969) [69], Zinober, El-Ghezavi, and Billings, (1982) [70], Walcott and Zak
(1988) [71], White (1983) [72], El-Ghezavi, Billings and Zinober (1983) [73]-[74], Ercshler,
Roubellat and Vernhes (1974) [75], Hikaita (1988) [76], Cheres (1989) [77], Spurgeon (1991)
[78], Gutman (1979) [79], Ryan (1983) [80], Dorling and Zinober (1986) [81], (1988) [82],
Woodham and Zinober (1993) [83], Hong and Wu (1989) [84]-[85], Zhou and Fisher (1992)
[86], Slotine, Hedrick, and Misawa (1987) [87], Slotine and Li (1991) [88], Hung, Gao, and
Hung (1993) [89], Asada and Slotine (1986) [90], Abdallah, Dawson, Dorato and Jamshidi
(1991) [91], Banks (1986) [92], Gau (1990) [93], Bartolini (1989) [94], Sarpturk, Istefanopulos,
and Kaynak (1987) [95], Singh (1989) [96], (1990) [97], Slotine (1984) [98], Vadali (1986)
[99], Yeung and Chen (1988) [100], Ferrara, Magnani and Scattolini (2002) [101], Chen and
Fukuda (1997) [102], Furuta (1990) [103], Edwards and Spurgeon (1998) [104], Utkin, Guldner
and Shi (1999) [105], Young (1993) [106], Palm, Driancox and Hellendoorm (1997) [107],
Zinober (1994) [108] and (1990) [109], Flippov (1988) [110], Young and Ozgiiner (1999)
[111], Choi (2004) [112], Spong and Vidyasagar (1989) [113], Emelyanov, Burovoi, and
Levada (1998) [114], Young, Utkin, and Ozgiiner (1999) [115], Garofalo and Glielmo (1996)
[116], Watanabe, Fukuda and Tzateftas (1992) [117], Parlakci, Jafarov, and Istefanopulos
(2004) [118], (2005) [119], Calise and Kramer (1984) [120], Esfandiari and Khalil (1991)
[121], Khalil (2002) [122], Oh and Khalil (1995) [123], Jafarov and Tasaltin (1998,2000)
[124],[126], Perruquetti and Barbot (2002) [127], Ha, Rye, and Durrant-Whyte (1999) [128],
Sage, De Mathelin and Ostertag (1999) [129], Lewis, Dawson and Abdallah (2004) [130],
Bailey and Arapostathis (1987) [131], Stepanenko and Su (1993, 1999) [132], [133], Zhihong
and Palaniswami (1994) [134], Parlakci, Jafarov, Istefanopulos and Belegradek (2001) [135],
Istefanopulos, Jafarov and Parlakci (2001) [136], Sabanovic, Fridman and Spurgeon (2004)
[137], Sciavicco and Siciliano (1996) [138], Choi (1997, 2002) [139]-[140], Singh, Steinberg
and Page (2003) [141], Yeh, Chien and Fu (2003) [142], Jerouane, Sepehri and Lamnabhi-
Lagarrigue (2004) [143], Dodds and Walker (1991) [144], Fu, Gonzales and Lee (1987) [145],
Fossard (1993) [146], Shtessel (1998) [147], Dzhafarov-Jafarov and Iskenderov (1980) [148],
Parlakci, Jafarov and Istefanopulos (2003) [149], Levine (1996) [150], Er, Zribi, Lee and
Mastorakis (1998) [151], Yu and Chen (2003) [152], Yu, X. and Yu, S. (2000) [153], Chinaev,
Dzhafarov-Jafarov and Iskenderov (1979) [154] etc.

Nowadays, this period of the advances of the variable structure control can be referred to us as
a third period of the advances of the sliding mode control theory and practice. Recently, several
special issues of International Journals and International Workshops are devoted to variable
structure systems and sliding mode control [155]-[159]. Some new theoretical and practical
results are summarized in these references. Now, it is difficult to calculate the number of the
papers, proceedings, journals and books devoted to sliding mode control.

B. Time-Delay Systems

The sliding mode control approach provides an efficient way to tackle challenging robust
stabilization problems not only for finite-dimensional dynamic systems, should also be
considered for systems with aftereffect.

It is well known that major engineering and communication systems contain time-delay and
parameter uncertainties subject to external disturbances. The existence of time-delay effect is
frequently a source of instability. Robust stabilization of time-delay system is not as easy as
that of a delay-free system. Therefore, the problem of robust stabilization of uncertain
dynamical systems with time-delay has received considerable attention of control researchers.
From the point of view of robust control design approaches the variable structure control
concept has played most important role because of its robustness to parameter uncertainties and
external disturbances. There are a large number of such papers in literature. However, the
number of papers concerning time-delay systems is not relatively large. Shyu and Yan (1993)

14



[160] have treated an integral variable structure controller involving equivalent control term

and relay term for stabilization of time delay systems with parameter uncertainties. Robust B
stability condition for unforced perturbed system is derived by using Razumikhin-Hale type
theorem. System matrix and its variation are cancelled by equivalent control term while relay
term is used only for generation the sliding mode on the integral sliding surface. However,
actually exact equivalent control term is unavailable since it is dependent on unknown norm-
bounded parameter uncertainties. Finally, VSC is designed only for nominal time-delay system.
Moreover, global stability condition needs the existence of stable system matrix. In spite of
this, Shyu and Yan type controller for the considered system is designed very well.

Luo and De La Sen (1993) [161] have designed the VSC including absolute values of state and
delayed-state feedback for robust stabilization of single input-delayed systems with parameter
uncertainties. Global stability condition is derived by using matrix measure method. Such
design approach is generalized for single state and input delayed SISO and MIMO system with
parameter uncertainties and external disturbances (Luo, De La Sen and Rodellar, 1997 [162]).
Robustness properties of sliding time-delay systems are analyzed.

Koshkouei and Zinober (1996) [163] have designed a sliding mode controller including
equivalent control term and relay term for stabilization of time-delay canonical MIMO system
with matched external disturbances by using Lyapunov-Krasovskii V-functional method.
Lyapunov-Krasovskii V-functional method (Lyapunov 1992 [11], Krasovskii 1956, 1959 [164],
[165]) has been introduced to stability analysis of variable structure systems with time-delay by
Jafarov (1980, 1998) [166], [167].

Lyapunov-Krasovskii V-functional method has been used for stabilization of multiple state-
delayed linear systems by Nazaroff (1973) [168]. Four-term sliding mode controller design for
multiple state-delayed systems with mismatching parameter perturbations and matching
external disturbances are considered by Li and DeCarlo (2001 and 2003) [169] and [170]. This
approach is applied to systems with differentiable time-varying delays (Li and DeCarlo, 2003
[170]).

Recently, several sliding mode controller design methods for uncertain systems with and
without time-delay are considered by many authors.

The behavior and design of sliding mode control system with state and input delays are
considered by Perruquetti and Barbot (2002) [127] using Lyapunov-Krasovskii functionals.
Latest research results in this area are given in survey paper by Richard, Gouaisbaut and
Perruquetti (2001) [171]. The combination of delay phenomenon with relay actuators makes the
situation much more complex. Designing a sliding controller without taking delays into account
may lead to unstable or chaotic behaviors or, at least, results in highly chattering behaviors.
Four-term robust sliding mode controllers for matched uncertain systems with single or
multiple, constant or time-varying state delays are designed by Gouaisbaut, Dambrine, and
Richard (2002) [172] by using Lyapunov-Krasovskii functionals and Lyapunov-Razumikhin
function combined with LMI’s techniques.

Shyu and Yan (1993) [160] design approach is extended to a combined four-term sliding mode
controller design for matched/mismatched uncertain time-delay systems with a class of
nonlinear inputs by Yan (2003) [173]. Delay-dependent stability condition is derived by using
quadratic Lyapunov function already involving an unknown delay constant. Conservativeness
example with good results is presented.

An analysis and design of bounded switching feedback controller for delay free variable
structure systems with matched lumped uncertainties are presented by Choi (2004) [112].

In general, an overview of some recent advances and open problems in time-delay systems and
sliding mode control for systems with input/output delays is given in large survey paper by
Richard (2003) [174]. Some delay-dependent stability criteria for time-delay systems are
advanced by Jafarov (2001, 2003) [175], [176].

Another type of VSC known as the min-max controller for robust stabilization of time-varying
state-delayed dynamical systems with matching parameter uncertainties and external
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disturbance has been designed by Cheres, Gutman and Palmor (1989) [177]. The global
stability and -stability conditions are formulated in terms of differential Riccati equations by
using Razumikhin-Hale type theorem (Razumikhin 1956 [178] and Hale 1977 [179]). Stability
analysis of variable structure systems with time-delay by using Lyapunov-Krasovskii functional
considered by Jafarov (1978, 1980, 1987 and 2001) [180]-[183] and Jafarov and Kalyon (1997)
[184]. Brief analysis of reviewed papers shows that various types of sliding mode controllers
and design techniques for uncertain systems with and without time-delay are considered.
However, global asymptotical stability and sliding conditions for stabilization of multivariable
time-delay systems with parameter perturbations and external disturbances by using a modified
Shyu and Yan controller and combined sliding mode controller are not investigated
systematically. In light of above mentioned design approaches, some modified simple two-
terms sliding mode controllers without an equivalent control term for perturbed and delayed
systems with unstable system matrix will be developed by new advanced design techniques.
Time-delay effect is frequently encountered in oil-chemical systems, metallurgy and machine-
tool process control, nuclear reactors, bio-technical systems missile-guidance and aircraft
control systems, aerospace remote control and communication control systems, etc. The
presence of delay effect complicates the analysis and design of control systems. Moreover,
time-delay effects in the state vector, especially in the control input degrade the control
performances and make the closed—loop stabilization problem challenging. For better
understanding of time-delay effect properties let us briefly analyze the existing design
methodologies. There are three basic control design methodologies for the stabilization of input
delayed systems: 1) Smith predictor method, 2) Reduction method, 3) Memoryless control
approach.

A common design method of input-delayed systems is well known Smith predictor control to
cancel the effect of time-delay. Smith predictor is a popular and very effective long delay
compensator for stable processes. The main advantage of the Smith predictor control method is
that, the time-delay is eliminated from the characteristic equation of the closed-loop system.
Classical Smith predictor was suggested by Smith (1957), (1958) [185], [186]. Modified Smith
predictor scheme’s have been advanced by Marshall (1974) [187], Aleviskas and Seborg (1973)
[188], Watanabe and Ito (1984) [189], Watanabe, Ishiyama and Ito (1983) [190], Al-Sunni and
Al-Nemer (1997) [191], Majhi and Atherton (1999) [192], etc.

Note that Smith Predictor removes only the time—delay from closed—loop while it is remained
in feed-forward path. Therefore, it is also an input-delayed system. An extension of the Smith
predictor method for the MIMO systems with state and input delays is considered by Aleviskas
and Seborg (1973) [188]. The control algorithm in a Smith Predictor is normally a PI-
controller. The D—part normally is not used since the prediction is performed by the dead—time
compensation. Prediction through derivation is not suitable when the process contains a long
dead— time. Replacing a PID-controller with a Smith predictor gives a drastic increase in
operational complexity. This is the main reason why most processes with long time—delay are
still controlled by PI-controllers. A modified Smith predictor based on industrial PI-controller
is designed by Hagglund (1996) [193]. A modified Smith predictor and controller for unstable
processes with time—delay are developed by DePaor (1985) [194]. Modified Smith predictor
control for multivariable systems with delays and unmeasurable disturbances is extended by
Watanabe, Ishiyama and Ito (1983) [190]. Modified Smith predictor and controller design
procedure for unstable processes is proposed by Majhi and Atherton (1999) [192]. A Smith
predictor fuzzy logic based PI-controller design for processes with long dead—time is proposed
by Al-Sunni and Al-Nemer (1997) [191].

The second important control design method of input—delayed systems is the reduction method
that was suggested by Kwon and Pearson (1980) [195].

This control strategy has been shown to overcome some of inherent problems of the
conventional Smith predictor method. For example, unstable system can be stabilized and the
effects of the initial conditions are taken into consideration. The reduction method, however,
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suffers from a weakness that the complete reduction to a delay free system is only possible with
an exact model of the system. Reduction method is extended to time—varying system with
distributed delays by Arstein (1996) [196]. A new robust stabilizing controller for a multiple
input—delayed system with parametric uncertainties by using a modified reduction method is
proposed by Moon, Park and Kwon (2001) [197]. However, an industrial implementation of
reduction method controllers is much complicated than conventional method.

The third design approach to stabilization of input-delayed systems is so-called memoryless
control method, which is similar to the conventional linear control method. Such controllers
have feedback of the current state only, are designed to delay—independent stabilization of
input—delayed systems by using Lyapunov—Krasovskii functional method, for example, see
Choi and Chung (1995) [198], Kim, Jeung and Park (1996) [199], Su, Chu and Wang (1998)
[200], etc. However, this approach is conservative when the actual size of the delay is small. In
fact, information on the size of the delay is often available in many processes. Hence, by using
delay information and past control history as well as the current state delay—dependent
controllers may provide much better performance than memoryless controllers.

Some examples concerning time-delay systems and stability analysis are given by Kolmanovski
and Nosov (1986) [201], Elsgolts and Norkin (1971) [202], Rezvan (1983) [203], Gorecki,
Fuksa, Gabrovski and Korytovski (1989) [204], Marshall, Goreki, Walton and Korytowski
(1992) [205], Dugard and Verriest (1998) [206], Wang, Lee, and Tan (1999) [207], Mac
Donald (1989) [208],

In analysis and design of time-delay systems, in general, the Lyapunov-Krasovskii functional
method is commonly used. Recent advances in time-delay systems are presented by Richard
(2003) [174], Fridman and Shaked (2003) [209], Jafarov (1990), (1999), (2000), (2003), (2003)
and (2005) [210]-[215], Niculescu and Gu (2004) [216], Niculescu (2001) [217], Mahmoud
(2000) [218], Gu, Kharitonov and Chen (2003) [219], Boukas and Liu (2002) [220]. Some
sufficient delay-dependent stability conditions for linear delay perturbed systems are derived
using exact Lyapunov-Krasovskii functionals by Kharitonov and Niculescu (2003) [221].
Several new LMI delay-dependent robust stability results for linear time-delay systems with
unknown time-invariant delays by using Padé approximation are presented by Zhang, Knospe
and Tsiotras (2002) [222]. Both delay-independent and delay-dependent robust stability LMI’s
from conditions for linear time-delay systems with unknown delays by using appropriately
selected Lyapunov-Krasovskii functionals are systematically investigated by Zhang, Knospe
and Tsiotras (2003) [223] in another paper. Stability of the internet network rate control with
diverse delays based on Nyquist criterion is considered by Tian and Yang (2004) [224].
Improved delay-dependent stability conditions for time-delay systems in terms of strict LMI’s
avoiding cross terms are developed by Xu and Lam (2005) [225]. A new state transformation is
introduced to exhibit the delay-dependent stability condition for time-delay systems by
Mahmoud and Ismail (2005) [226]. Determining controllable sets from a time-delay description
is given by Rhodes and Morari (1996) [227].

Some new approaches to analysis and design of time-delay systems are advanced by Su, Ji, and
Chu (2005) [228], Wu, He, She and Liu (2004) [229], Kim (2001) [230], Mahmoud and Al-
Muthairi (1994) [231], Fiagbedzi and Pearson (1986) [232], Moon, Park, Kwon and Lee (2001)
[233], Olgac and Sipahi (2002) [234], Zheng, Cheng and Gao, (1993) [235], Hu, Basker and
Crisalle (1998) [236], Jing, Tan and Wang (2004) [237], Wang and Unbehauen (2000) [238],
Cao and Sun (1998) [239], Kim, Park and Oh (2000) [240].

Resuming the brief analysis of considered references concerning the existing design
approaches, it can be concluded that time-delay systems are intensively investigated recently by
researchers in light of the above mentioned three directions. Several books and a great number
of Journal papers recently written on variable structure control and time-delay systems.
However a few papers are written in their intersection. This book is one more item in that
series.
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Recent advances in sliding mode control and time-delay systems and their intersection are
presented in this book which, cover the essential background to modern robust variable
structure control analysis and design method and sliding mode control of time-delay systems.
The book consists of six chapters and is organized as follows.

Chapter 1 considers analysis and design of robust linear and variable structure control of
uncertain systems without time-delay. Sliding mode control design techniques for aircrafts and
missiles are presented in Chapter 2. Variable structure relay, P, PD, PID - controller design
methods for robot manipulators with non-linear dynamics are systematically developed in
Chapter 3. Variable structure control analysis and design methods of time-delay systems with
parameter uncertainties and external disturbances are considered in Chapter 4. In this chapter,
robust stabilization of multivariable single and multiple state-delayed systems with
mismatching parameter uncertainties and matching/mismatching external disturbances are
considered. Two types of robust sliding mode controllers design techniques are presented.
Chapter 5 formulates reduced and full orders sliding mode observers design methods for
uncertain systems with and without time-delay systems. Stability analysis and control of time-
delay systems using reduction method and Lagrange mean value theorem are described in
Chapter 6.

This book will be useful I hope for researchers and practitioners in field of Control and Systems
Engineering, and also for teachers and graduate students on mentioned courses. The material of
this book is original and published in the pages of the several archival Journals and
International Conference Proceedings, which are results of research and teaching activities of
author in Aeronautical and Astronautical Engineering Faculty of Istanbul Technical University
since 1996.

It is clear that in the preparation of this book some mistakes of various types may have been
made. Any of those mistakes found by readers will be gladly accepted and corrected in the
following editions.

I wish to thank my students, Ph.D. Erkan Abdulhamitbilal and M.Sc. Ahmet Sofyali for their
helping with the computer preparation of the manuscript.

Prof. Dr. Elbrous M. Jafarov

Faculty of Aeronautics and Astronautics,
ITU, Maslak, Istanbul, Turkey

July 2009
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CHAPTER 1

Robust Linear and Variable Structure Control of Multi-Input
Uncertain Systems

1.1 Introduction

In this chapter, two types of very simple robust full state feedback controllers: 1) combined
linear and 2) combined variable structure controllers design techniques for stabilization of
multi-input linear dynamical systems with matched/mismatched but available upper norm-
bounded unknown parameter uncertainties subject to matched but upper norm-bounded external
disturbances are advanced. The conventional equivalent control term is not used in second
controller because equivalent control term needs to use the matching conditions and unavailable
parameter uncertainties. The robust global asymptotical stability, P-stability and sliding
conditions are parametrically obtained by using Lyapunov V-function method and
systematically formulated in terms of some matrix equations. The robust controller’s
computational algorithms are presented. By these algorithms stability conditions can be reduced
to standard algebraic Riccati equation (ARE) problem. Two design examples with simulation
results for jet fighter F-16 are given to illustrate the usefulness of the obtained results.

1.2 Brief review of robust systems

Recently, much attention has been paid to the design problem of robust state feedback
controllers for stabilization of linear dynamical system with norm-bounded parameter
uncertainties via Lyapunov variable structure control design because of their robustness to the
matched parameter perturbations and external disturbances (for example, Garofalo and
Glielmo, 1996 [1]). There are two basic design approaches: 1) conventional linear state
feedback and 2) Lyapunov min-max or variable structure controllers design approaches.

Robust linear continuous and discontinuous Lyapunov quadratic controllers’ design for linear
uncertain systems with external disturbances has been considered by (Corless, 1994 [2]).
Quadratic stability and f -stability conditions are formulated in terms of algebraic Riccati

equations combined with LMI’s techniques. Robust memoryless linear state feedback
controllers design for stabilization of time-delay systems with matched parameter uncertainties
have been successfully designed for example by (Mahmoud and Al-Muthairi 1994 [3], Cao and
Sun 1998 [4]), etc. Global stability conditions are formulated in terms of matrix norm and
algebraic Riccati inequalities. Riccati equation approach is used in designing of robust linear
controllers for uncertain systems by (Petersen and Hollot, 1986 [5], and Shen, Chen and Kung,
1991 [6]).

There is a large number of types of variable structure controllers in literature: variable structure
control (Emelyanov, 1967 [7]); equivalent control, VSC+relay term (Utkin, 1977 [8]; Utkin,
Guldner and Shi, 1999 [9]; Sabanovic, Fridman and Spurgeon, 2004 [10]); VSC, min-max,
relay term, equivalent control and their combinations (DeCarlo, Zak and Matthews, 1987 [11]);
VSC, relay, equivalent control, reaching law method (Hung, Gao and Hung, 1993 [12]); VSC,
relay, min-max, equivalent term (Spurgeon, 1991 [13]; Edwards and Spurgeon, 1998 [14]);
equivalent term+VSC (Hong and Wu, 1989 [15]); min-max, equivalent term, relay, VSC
(Dorling and Zinober, 1986 [16]; Koshkouei and Zinofer, 2004 [17]); continuous sliding mode
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control (Zhou and Fisher, 1992 [18]); nominal equivalent term+switching function+min-max
term (Yoo and Chung, 1992 [19]); equivalent control+unit vector term (Zinober, 1994 [20]);
VSC, min-max (Jafarov and Tasaltin, 2000 [21]); integral sliding mode controller (Jafarov and
Tasaltin, 2001 [22]); PD-variable structure controller (Jafarov, 2003 [23]); PID-variable
structure controller with PID sliding surface (Jafarov, Parlakci and Istefanopulos 2005 [24]);
three mixed terms: linear state control+switching function+variable structure term controller,
for multivariable canonical systems with mismatched uncertainty in the state matrix (Kim, Park
and Oh, 2000) [25]; two terms switching function+min-max output controller for regular form
multi variable systems with lumped uncertainty (Choi, 2002 [26]); three terms switching
functiontequivalent control+min-max state controller (Choi, 1997 [27]), mixed VSC for
multivariable canonical uncertain systems (Choi 2001 [28]), various types of sliding mode state
and output feedback controllers (Edwards and Spurgeon, 1998 [14]; Edwards, Spurgeon and
Hebden, 2003 [29]; Perruquetti and Barbot, 2002 [30]; Journals special issues [31] and [32]);
flight path controller (Singh, Steinberg and Page, 2003 [33]); missile-guidance sliding mode
controller (Yeh, Chien and Fu, 2003 [34]); variable structure force controller (Jerouane, Sepehri
and Lamnabhi-Lagarrigue, 2004 [35]) etc. A new class of variable structure controllers known
as the min-max controllers has been introduced by (Gutman, 1979 [36]). Asymptotic stability in
sense of Lyapunov is analyzed via generalized dynamical systems. (Cheres, 1989 [37]) has
successfully designed the min-max controller with prescribed sliding motion for systems with
lumped uncertainties. The basic difference between min-max controller and the variable
structure controller is their design method. The VSC has been design to stabilize the system via
a prescribed sliding mode, whereas the min-max control has designed via the second method of
Lyapunov and the concept of generalized dynamical systems. As shown by (Gutman, 1979
[36]) since a min-max is in general simpler then a VSC one it seems reasonable to obtain a min-
max design for VSC. The design of sliding mode controller for nominal systems may need to
an unpredictable behavior of the closed-loop in the case of mismatching disturbances. Taking
this mismatching into account the sliding surface is designed by (Takahashi and Peres, 1999
[38]) via the minimization of a quadratic performance criterion in the regular form. But, sliding
and stability conditions are not considered and controller is not designed. An LMI-based
switching surface design for canonical multivariable systems with mismatched uncertainties in
the state matrix is developed and a new invariance condition is derived by (Choi, 2003 [39]).
Two new combined variable structure and norm-bounded relay controllers design methods for
the stabilization of matched/mismatched uncertain systems with external disturbances are
developed by (Choi, 1997 [27], 2002 [26] and 2004 [40]). The sliding, stability, f -stability and

ultimately boundedness conditions are formulated in terms of LMI’s techniques. Equivalent
control term depending on unknown parameter uncertainties and external disturbances can be
defined according to (Utkin, 1977 [8]) and using by (Ryan, 1983 [41]); (Spurgeon, 1991 [13]);
(Zinober, 1994 [20]); (Hung, Gao and Hung, 1993 [12]).When so-called matching conditions
(Drazenovic, 1969 [42]; Utkin, 1977 [8]) are satisfied that the sliding mode is invariant to the
parameter perturbations and external disturbances. The physical meaning of matching
conditions is that all modeling uncertainties and external disturbances enter the system through
the control channel (Hung, Gao and Hung, 1993 [12]). But clearly that the equivalent control
cannot be synthesized explicitly as it involves the unavailable unknown functions (Ryan, 1983
[41]). Robust optimal combined variable structure controller with novel sliding surface
including the nominal dynamics for multivariable uncertain systems with external disturbances
is considered by (Park and Ahn, 1999 [43]). However, combined controller consists of seven
terms, therefore it is complicated. Stability analysis in large is not investigated. Another robust
sliding mode control with application for uncertain multivariable non-linear systems with
external disturbances is considered by (Ha, Rye and Durrant-Whyte, 1999 [44]). Proposed three
terms controller consists of equivalent term, robust term and fuzzy term. Stability analysis in
large is not investigated. Chen and Fukuda type of combined sliding mode controller (Chen and
Fkuda 1997 [45]) consists of three terms which is designed for stabilization of continuous
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canonical form of single input systems.Existence conditions of sliding mode is derived.
Recently, some special journal issues [31] and [32] are devoted to various aspects of sliding
mode control. Some new theoretical and practical results are summarized in these references.

However, as pointed by (Utkin, 1992) [46], it should be remembered that as rule the original
system equations are given with respect to variables characterizing physical processes in
individual system elements rather than to canonical variables, which implies that the system
behavior is described in terms of a general state space equation. For this reason, above
mentioned controller design techniques developed for transformed canonical systems in regular
form may be unacceptable to original not transformed full state systems. Moreover, the
following comments can be pointed for our purposes. VSC in (Choi, 1997 [27]) is relatively
complicated and designed system for mismatching case is only uniformly ultimately bounded.
The original system in (Kim, Park, Oh, 2002 [25]) is transformed to canonical form, but
controller is described in terms of old and new variables. Coupling stability analysis in large
with respect to new variables is not investigated. Norm boundedness conditions for &, involve

unknown parameters. Output variable structure controller, designed by (Choi, 2002 [26]), is
simple. But stability analysis is given in terms of old and new variables, and in evaluating upper
bounds the control terms’ norms are going with positive sign. For this reason, upper bounds are
increased too much. Mismatched state matrix uncertainty and external disturbances are
compensated by the linear term of controller. But, this implies to force a gain constant of linear
control term excessively. Indeed, as calculated in example, linear gain 30.481 : 2 = 15.2405
time greater that switching gain.

In this chapter, two types of very simple robust full state feedback controllers: 1) combined
linear and 2) combined variable structure controllers design techniques for stabilization of
multi-input full state linear dynamical systems with matched/mismatched, but available upper
norm-bounded unknown parameter uncertainties subject to matched but upper norm-bounded
external disturbances are advanced. The conventional equivalent control term is not used in
second controller because equivalent control term needs to use the matching conditions and
unavailable parameter uncertainties. In different from existing results robust global
asymptotical stability, f -stability and sliding conditions are parametrically obtained by using

Lyapunov V-function method and systematically formulated in terms of some matrix equalities.
Two design examples with simulation results for jet fighter F-16 are given which show the
effectiveness of design procedures.

1.3 System description and assumptions

Consider the uncertain multi-input systems with external disturbances descried by the following
state equations:

xX() =[A+AA(o)]x(t)+[B+AB(o)u(t)+ Df (¢) (1.1)

where x(t)e R" is the measurable current value of the state, u(¢)e R™ is the control input
f(@®) eR" is unknown external disturbance vector but uniformly bounded || f (t)||$9, where
|| f (z)|| is the Euclidean norm vector, @ =constant, 4,B,D are known constant matrices of
appropriate dimensions with B of full rank, Ad(c), AB(c) represent the bounded uncertainty
of the linear portion and the bounded input matrix uncertainty, respectively, o(f)eR” is the

uncertain element. We shall use W', A7), 4., (W), An (W) to denote, respectively, the
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transpose, eigenvalues, minimum eigenvalues, and maximum eigenvalues of a square matrix
w.Welet W >0 or W <0 to signify the positive or negative definite matrix W .

Note that, such description of generalized system of type (1) with disturbance input is known
very well in literature, for example Iwasaki and Skelton (1994) [47], Cheres (1989) [37], etc.
The objective of this work is to develop the robust controller design techniques for the
stabilization of uncertain multi-input systems with external disturbances.

To achieve this goal we design two types of robust combined linear and variable structure
controllers. Using Lyapunov V-function method we derive new global robust stability and
sliding conditions, which are formulated in terms of algebraic Riccati equations.

Now, we make following conventional assumptions.

Assumption 1: There exist some bounded matrix functions (mxn)-H(c), (mxm)-E(c)>0,

(mxn)-F, such that for all uncertain elements the following conventional matching conditions
(Drazenovic 1969 [42], Utkin 1977 [8], Gutman 1979 [36], Dorling and Zinober 1986 [16], et
al.) are satisfied:

AA(c) = BH (o)
AB(c) = BE(o) (1.2)
D=BF

and D(o) = BF (o) for the general case if D(o) is a bounded uncertain matrix. In particularly, F
is a known constant matrix if D is a known constant matrix.

Define following norms for bounded uncertain and certain matrices:

@ =|| B P|= A
a= mglx”AA(O')"

(PBB"P)

p=max || H(0) ||= max /A, (H (0)H (o) <1

min || F(o) [I<]| F (o) II= Ve (FT (0)F (0) (1.3)
< max || F(o)|I< mgxm | F(o)|= f [49]
o=|r0|

O<a= main ||E(O')|| < ||E(O')|| < max ||E(O')|| =n<l1

where P is a positive definite matrix to be determined; w,a, p, f,6,n are some positive scalars.

Without loss of generality similar to Mahmoud and Al-Muthairi (1994) [3] we can assume that
n<1 for E(c)>0 [3].

Observation 1: (Shyu and Yan, 1993) [48]. If
z(t) = e’ x(t) (1.4)

where x(¢) is the solution to the (1) and z(¢z) =0 is asymptotically stable, then the system (1)
has the stability degree £ >0.
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1.4 Robust linear controller design

In this section, a new combined linear controller design techniques for stabilization of matched
perturbed system (1) is considered. The stability and g -stability conditions are derived in

terms of some matrix equations.

141 Combined linear control law

Let us construct following combined linear controller:

u(t) =—kB" Px(t)— u (1.5)
where k& is a constant feedback gain, x is a constant control vector term to be selected;

li<s.

Controller (5) consists of two parts: 1) Conventional linear state feedback similar to (Mahmoud
and Muthairi 1994 [3], Cao and Sun 1998 [4]) which is used to compensate the parameter
uncertainties and 2) Constant control term which is different from [3], [4], and used to reject the
external disturbances. Note that, this control law is continuous and linear in state. Therefore, the
existence of the solution of (1) under controller (5) also in the usual sense can be guaranteed.
We want to design the parameters k&, u and P such that the perturbed closed-loop system is

globally robustly asymptotically stable.
1.4.2 Global stability conditions
The following theorem summarizes our stability results.

Theorem 1: Suppose that Assumption 1 holds. Then the uncertain system (1) under the action
of the linear controller (5) is globally robustly asymptotically stable, if the following conditions
are satisfied:

A" P+ PA+20pl, —2k(1- )01, =-0 <0 (1.6)

where Q is a positive definite matrix

s=t0 (1.7)
1-n

Proof: Choose a Lyapunov V-function candidate as

V(x(t)) = x" (t)Px(t) (1.8)

where P=P” >0 is a positive definite matrix.

The time derivative of (8) along the trajectory of (1), (5) is given by:

V(x(t)) = x7 (£)Px(t) + x" (t)Px(t)
= X" (1) A" Px(t) + x" (6)PAx(1) + 2x" (1) PAA(0)x(¢) + 24" (6)PDF (1) + 2" (1) P B+ AB(0) Ju(?)

=x' (1) A" P+ PA) x(t)+2x" (1) PBH(0)x(1) +2x" (1) PBF (0 / (1)~ 2kc” (1)PB(1,, + E(0)) B' Px(t)
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—2x" (t)PB([m + E(a)),u

(1.9)
= x" (t)( A" P+ PA)x(1) + 2x" (t)PBH (0)x(1)

—2kx" (t)PB(1,,+ E(0)) B" Px(t)
+2x" ()PB[ F(0) [ (1) ~(I,,+ E(0)) ]
In according to Rayleigh’s principle (Skogestad and Waite 1997 [49], Zang 1999 [49]),

Jrnin () + Ao (B) <[ A+ B < 2 (A) + Ay (B)

in

where A, B are positive definite matrices, A + B > 0 and triangle inequality ||A+B|| < ||A||+||B

b

we can evaluate:

mn(E@) <L, + E(0)| <147 (1.10)

0<1l-n7<1+minA

where min A
o

min

(E(o))=a,>0.

Correctness of inequalities (10) directly follows also from Fan’s type results [49], [50] for
positive semi-definite matrices A and B:

[ﬂmax (A)— A (B)]xrx <x"(4+B)x< [xlm (A)+ Aax (B)] x'x

ax

Then

A-mx"x< (1, +E(0))<(1+n)x"x

or

1-n<|1, +E@)|<1+7.

Hence —||I, +E(o)|<—(1-n),n<1; (1.11)
Therefore we can evaluate

2k(1—17)(B"Px(1)) (B" Px(1)) < 2k(B" Px(1)) (I, +E(0))(B" Px(1))
(1.12)
<2k(1+17)(B"Px(1)) (B" Px(1))

Since Schwarz’s inequality holds:

37



2x" (VPB[ F(0)f(t)=(1, + E(@)) u| < 2|x" || PB||F(0).f ()~ (1, + E()) 4
(1.13)
= 2a)“xT (t)““F(G) fO~(1,+E(0)) ,u”

Again based on Rayleigh’s principle [49], [50]:
|ﬂ’min (A) - /?’max (B)| "A B" < /?’max (A) + ﬁ'mm ( )

for 4- B >0 and triangle inequality (Vidyasagar 1978 [51]):

H|x||—|| ym < ||x— y|| for two given vectors X and y, we can evaluate the upper bound of (13) as

follows:

mll’l\/ max FT(O-)F(O-) "f(t)" maX/lmax( m

<|F(@)1/ )= (1,+E(@) 4

< maxmn,|2 J wax (FT(@)F (@) [/ @) —min Ay (1, + E(0)) 1] < £0-(1-m)5 (1.14)

As a matter of fact we want, in light of ¥ (x(¢)) <0, to make an upper bound of this term to be
equal to zero: |F(c)f(t)- (1, +E(o))u| = 0, which always is possible because of selecting the

some value of design parameter x .

Let us evaluate:
2x" (t)PBAH (0)x(t) < 2||PB||H (o) x" (1)x(2) = 2px ()x(2); (1.15)
Then

V(x(t) < x" () ( AP+ PA) x(t)+2wpx" (£)x(t) —2k(1-n)*x" (t)x(t) + 2(0[ fO—-(1-n)o ] ||x(t)||

=X () A" P+ PA+2apl, —2k(1-m@’1, |x(0)+ 20 f0-(1-mS]|x0)|

(1.16)
=—x"Ox(?) —260[(1 —mo—f 6’] ||x(t)||
In view of (16), if conditions (6) and (7) or the following same conditions are satisfied:
® =[Amin(Q)]>0 (1.17)
Q=[6(1-n)-f020=0 (1.18)
Then (16) reduces to
V(x(1) <0 |x(0)| - Qx(0)]| =@ x| <0 (1.19)
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Therefore, we conclude that the closed-loop perturbed system (1), (5) is globally robustly
asymptotically stable. The theorem is proved.

Remark 1: There are three approaches for evaluation of terms in (9):

1) Vector-matrix norm evaluation approach:
Schwarz’s inequality: ‘VTW< < ||v||||w||
Matrix product inequality: ||U W|| < ||U ||||W||

where v, w are some vectors and U, are some matrices.

Then, for example:

227 (1)PBH (0)x(t) = 2[ B" Px(t) | [H(0)x(1)]
(1.20)
<2|B7 P||x()| max,, | H (o) |x(t)] = 20p ()]

This approach is used in (15). Similar evaluation is frequently encountered in literature, for
example Cheres (1989) [37], Mahmoud and Al-Muthairi (1994) [3], Shyu and Yan (1993) [48]
etc.

2) Summation evaluation approach also is very well known in literature, for example Cao and
Sun (1998) [4]. This approach based on following inequality:

Ww<a vTv—i-inw, a>0 (1.21)
a
Then

2xT (t)PBH (o)x(t)=2 [BT Px(z‘)JT [H (o*)x(t)] <xT (t)PBBT Px(t)+ xr H T (0)H(o)x(2)
<[[PB[ x| +max, [H@ [x) =@ + o xof (1.22)

3) Modification to summation evaluation approach:

2x" (1)PBH (o)x(t) < x" ()x(t) +x" (t)PBH (c)H (c)" B" Px(t)

<" (0)x(t) +x" (t)ymax,, [PBH (o) x(t) (1.23)

2 2 2
=[1+max, |PBH(@)[ [|x@) <[1+*0* (o)
Note that, considered various evaluation approaches are true and there is a following
relationship between them
20 pLot+pt <1+0’p? (1.24)

which is also true. Here and further, for our problems we can use all of alternative approaches
that only inconsiderably influence the damping constant of V-function, stability region or
equilibrium point of perturbed system.
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Note that in this case the control action (5) is sufficient to reject the external disturbance, since
0(1-n)= f6. Then the equilibrium point of perturbed closed-loop system (1), (5) is shifted

=0 because J is selected such that Q=0 that is the uniformly

from

X

e

Q -
=— to origin |x,
D

bounded external disturbance is vanished by the negative constant control action (5). Moreover,
V(x(t)) does not contain the non-vanishing perturbation and becomes negative definite.

Therefore, the origin of the closed-loop perturbed system (1), (5) becomes an equilibrium point
by the control action (5) for uniformly bounded disturbance the effect of which is suppressed.
For this reason also we may say that the origin of perturbed closed-loop system (1), (5) is
globally asymptotically stable. Thus, the uniformly bounded disturbance is suppressed and
origin is globally asymptotically stable if only if Q=0 or 6(1—7)= f6. But the origin cannot

be made to be equilibrium by the control (5) for arbitrary disturbance f(¢). This particular

result for linear perturbed systems does not contradict to Khalil (2002) [52] concept of
ultimately boundedness solution of perturbed system.

Remark 2: The equilibrium of the perturbed system (1), (5) in general varies with the
disturbance f(¢) since f(¢) is allowed to be a persistent disturbance. Let us consider following

cases:
1) First, assume that Q>0 or OJ(-7n)>f60. Then from (19) we have

V(x(t)) < —CI>||x(t)||2 —Q"x(t)” <0 because ® >0 and Q>0. Therefore, we conclude that the
solution of (1), (5) is uniformly ultimately bounded. Equilibrium point is shifted from origin to

e

X =—% because linear controller (5) in this case does not suppress only the effect of

disturbance, but has produced an excessive negative constant control action as a non-vanishing
perturbation. Although, this over control extended the region of stability, it cannot make the

origin to be in equilibrium. Region of stability follows from inequality —<1>||x(t)||2 —Q"x(t)" <0

or —[x(®)](@[x®)|+L) <0 which is hold if [x()]>0 and [|x()]> —%. Thus, in this case the

solution of (1), (5) is uniformly ultimately bounded in region |x(¢)| > —%. Therefore, origin is

stable but it is not an equilibrium point. Perturbed system is unstable or unbounded in region

Q
(—oo,—a].

2) Second, we consider the case when Q<0 or 5(1-7) < 6. Then from (19) we have
V(x(0) <@ [x() +Q|x(0)] =—|x(®)] (®[x()| Q) <0. This inequality is satisfied if

|x®)]>0 and ||x(t)||>%. Therefore, perturbed system is uniformly bounded in region

||x(t)||>%. Origin of perturbed system (1), (5) is shifted to ||xe||=% because the negative

constant control action is not sufficient for suppression of disturbance. Therefore, origin is
unstable or unbounded. Thus, in this case the perturbed system (1), (5) is uniformly bounded in

region ||x(t)||>% and origin is unstable or unbounded. Perturbed system is unstable or

unbounded in region (-o0, % ].

40



3) Third, we consider the case when the external disturbance is not presented f(¢)=0. In this

case linear controller (5) without constant term or u(¢) =—kB” Px(t) renders the origin of the
matched uncertain system (1) without external disturbance, to globally asymptotically stable.

Since from (19) we have V(x(¢)) < —C[)"x(t)"2 <0, because of QQ=0. Then this system has an

equilibrium point at origin ||xﬁ|| =0. Origin is globally asymptotically stable in region (—o0,).
1.4.3. Robust stabilization with a stability degree >0

With the Observation 1 now we are ready to present the following Corollary 1 of Theorem 1.

Corollary 1: Suppose that Assumption 1 holds. Then the perturbed system (1) driven by linear
controller (5) is globally asymptotically stable with stability degree (>0 if the following
conditions are satisfied:

(A+BI,) P+P(A+pL,)+20pl, —2k(1-n)*l, =-0 (1.25)

where Q is a positive definite matrix

__Jo (1.26)
1=7
Proof: Utilize (4) to transform (1) into

2(t) = B’ x(t) + e” x(t) = (A+ BI,)e” x(¢) + B[I,, + E(c)]e” u(t)
+BH (c)e” x(t) + BF (o)e” f (1) (1.27)
= Az(t) + B[1,, + E(0))i(t) + BH(c)z(t) + BF (&) f (t)
where for the sake of simplicity, we let
A=A4+pI,

u(t) =e’u(r) (1.28)

fO=ef(t)
Q:=2¢" [ 5(1-17)— f0]=0 (1.29)

Then controller (5) can be transformed into:

u(t)=e’'u(t) = —kB" Pe" x(t)—e" u=—kB" Pz(t)- i (1.30)
where 1=e” p.

Now let us choose a Lyapunov V-function as:

V(z(t)) = z" (t)Pz(t) (1.31)

where P a positive definitive matrix.
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The time derivative of (31) along the transformed system (27), (30) can be evaluated similar to
proofs of Theorem 1 as follows:

V(z(1) < -0|z(0)|” ~ Qz(t)| = —@[2(0)|" <0 (1.32)

Therefore, we conclude that the transformed closed-loop perturbed system (27), (30) is globally
robustly asymptotically f -stable. The Corollary 1 is proved.

1.4.4 Robust stabilization control algorithm 1

The sufficient stability condition can be transformed into standard algebraic Riccati equality
and robust linear controller with constant term can be obtained by solving an ARE.

Taking into account lover bound of evaluation (12) and (22) condition (6) can be rewritten as.

A" P+ PA+ PBB" P+ p*1 —2k(1-1)PBB"P=-Q (1.33)
Letting
pI+0=0, p* <1 (1.34)
1
h=—0 (1.35)
1-7

where Q, is a positive definite symmetric matrix.

Then, condition (6) can be reduced to standard ARE:

A"P+PA-PBB"P+(Q, =0 (1.36)
Now, control algorithm can be obtained by following steps:

. The parameters A, B, D, a, p, f, 6 and n are given.

. Solve ARE (36) for given Q, by using MATLAB command.

. Check condition (6)

. Find k from (35)

. Find § from (7)

. Obtain control algorithm from (5)

1.4.5 Design example 1: Linear control for F-16

Consider design of linear control system (1), (5) for jet fighter F-16. F-16 linearized lateral
dynamics at the nominal flight condition is taken from (Stevens and Levis 2003 [53]). This
dynamics is augmented by the aileron and rudder actuators given by simplified model

ﬂ [53]. A washout filter r,, =
s+20.2 s+1

r is used with r yaw rate and 7, the washout yaw
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rate. The full dynamics model of F-16 aircraft with actuators, washout filter and control can be
presented in the following state space form x = Ax + Bu :

B | [-0329 0640 00364 -09917 00003 00008 0 | 0 0

é 0 0 1 0.0037 0 0 0 ¢ 0 0

P -30.6492 0 -3.6784  0.6646 -0.7333  0.1315 0 | p 0 0
Fol=| 85396 0 -0.0254 -04764 -0.0319 -00620 0 |r |+| 0 0 {”}
s, 0 0 0 0 -20.2 0 0 |lo,| 202 0o [
S 0 0 0 0 0 -202 0 |5, 0 202

xw 0 0 0 572958 0 0 -1 Jlx,] [0 0]

The output is of the form y = Cx:

s

v, 0 0 0 57295800 -17"
» 0 057208 0 00 o]”
= r

Bl 1572958 0 0 0 00 0
y 0 57.2958 0 0 00 o)
_xW_

where £ is the sliding angle, ¢ is the bank angle, p is the roll rate, r is the yaw rate, &5, is the
aileron deflection, &, is the rudder deflection, x,, is the washout filter state. The control inputs
are the aileron u, and rudder u, servo-inputs.

The linear controller design can be fulfilled by the following steps:
e  Solve the matrix inequality MI (6) (or ARE (36)) by using MATLAB programming;:

clear

cle

format long

A=[-0.322 0.064 0.0364 -0.9917 0.0003 0.0008 0;
0010.0037 00 0;-30.6492 0 -3.6784 0.6646 -0.7333

0.1315 0;8.5396 0 -0.0254 -0.4764 -0.0319 -0.0620 0;

0000-20200;00000-20.20;000 57.2958 00 -1 J;

Lambda=eig(A);

B=[0 0; 0 0;0 0;0 0;20.2 0;0 20.2;0 0];

C=[00057.2958 00-1;0 0 57.2958 0 0 0 0;
57.2958 0000 0 0;0 57.2958 0 0 0 0 0];
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t =45
a=3.43765023911784
p =0.17018070490682

£=0.10506439776355
n=0.17018070490682

6= 0.2000
0 =0.0253
The eigenvalues of open-loop system are:

eig(A)=-1.0000; -0.4226 + 3.0634i; -0.4226 — 3.0634i; -0.0163 ; -3.6152; -20.2000 ; -20.2000

[ 100.678 0.875 -3.119 10.225 10.67 0.047 -2.6412 |
0.875 586.16 -0.501 0.335 -0.377 10.63 1.1764
-3.119 -0.501 24.801 7.351 -0.762 0.128 -9.1344
P=| 10225 0335 7.351 5491 -036 -0.72 0.58763
10.67 -0.377 -0.762 -0.36 10.0247 0 10.999
0.047 10.63  0.128 -0.72 0 10.0247 -0.195

| -2.6412 1.1764 -9.1344 0.58763 10.999 -0.195 367.416 |

[1.492754417852
8.692803404904
9.908526004284

eig(P) = | 27.089320552563

103.036178439956

368.011053084026

586.364764096415 |

BT P 215.5340 -7.6154 -15.3924 -7.2720 202.4989 0 222.1798
| 0.9494  214.7260 2.5856 -14.5440 0 202.4989 -3.9390
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[ 4.6456 -0.1438 -0.3315 -0.1581 4.3645 0.0192 4.7884 |
-0.1438 4.6165 0.0672 -0.3068 -0.1542 4.3482 -0.2538
-0.3315 0.0672 0.0244 0.0074 -0.3117 0.0524 -0.3430
-0.1581 -0.3068 0.0074 0.0264 -0.1473 -0.2945 -0.1558
43645 -0.1542 -0.3117 -0.1473 4.1006 0 4.4991
0.0192 4.3482 0.0524 -0.2945 0 4.1006 -0.0798

| 4.7884 -0.2538 -0.3430 -0.1558 4.4991 -0.0798 4.9379 |

~|
I

eig(P)=1.0e+005*[0 1.3727 0.8725 0.0000 0.0000 0.0000 0.0000]

w =3.705035436862447e+002
k =0.10000000000000

[-2.2354 0.0024 -0.0681 -0.0440 -0.0197 -0.0012 0.0288 |
0.0024 -2.2655 0.0588 0.0069 0.0009 -0.0215 -0.0001
-0.0681 0.0588 -2.2839 -0.0534 -0.0000 0.0010 0.0044

MI =1.0e +004*| -0.0440 0.0069 -0.0534 -2.2604 0.0621 0.0004 2.1047

-0.0197 0.0009 -0.0000 0.0621 -2.3059 -0.0000 -0.0227

-0.0012 -0.0215 0.0010 0.0004 -0.0000 -2.3060 0.0003

| 0.0288 -0.0001 0.0044 2.1047 -0.0227 0.0003 -2.3390 |

[ -4.40849596007995 |
-2.36253528295538
-2.31257559703383

eig(MI)=1.0e + 004 *| -2.30322752025645

-2.24355990289093

-2.17217989587229

| -0.19357938064528

which is a negative definite matrix. Thus, all design parameters are obtained.

System (1), (5) for F-16 is simulated by using Matlab-Simulink. Block diagram of this system
is shown in Figure 1.1. Time responses and control functions are shown in Figure 1.2 and 1.3,
respectively. Simulation results show that the control performances are satisfactory, for

example settling time is 15 sec.
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1.5. Variable structure controller design

In this section combined variable structure controller design techniques for robust stabilization
of uncertain system with parameter perturbations and external disturbances are advanced. The
stability and sliding conditions are derived by using Lyapunov V-function method and
formulated in terms of some matrix equalities. Matching and mismatching cases are considered
also.

1.5.1 VSC law and matching sliding conditions

Form the combined simple variable structure controller as:

u(®) = ~[kx(o)] + fﬂﬁ (1.37)

where k is a scalar feedback gain and & is a relay constant to be designed. The sliding surface
is defined as follows

s(t) = BT Px(1) (1.38)

where B'P=C is a sliding mode (mxn)-matrix of full rank and CB =B’ PB is invertible,
because B’ PB is a positive definite (mx m )-matrix.

VSC (37) consists of two parts: 1) min-max or quasi-relay term to compensate the matched or
mismatched parameter uncertainties and to drive the system trajectories toward the switching
surface until intersection occurs, 2) relay part to reject the matched external disturbances. After
selecting the sliding mode control the next step is to choose the design parameters k,6 and P
such that the stable sliding motion can always be generated on the manifold s(t)=0. With regard
to the sliding condition, we may state the following theorem.

Theorem 2: Suppose that the Assumption 1 holds. Then the asymptotically stable sliding mode
can always be generated on the sliding surface s(¢) =0 (38) defined for perturbed system (1),

(37) if the following conditions are satisfied:

PA+ AP +2pwl,

max

(B" PRI, — 2,k(1 = 1) A (B PB)P = —Q (1.39)

_ fOu (B PB)
(1= 1) Ain (B PB)

(1.40)

where P = PBBT P is a positive semi-definite matrix, 0 in general is a positive semi-definite
matrix and @, =1/w.

Proof: Choose a Lyapunov function candidate as
V(st)) =s"(t)s(t) (1.41)

The time derivative of (41) along the trajectory of the system (1), (37), (38) can be calculated as
follows:

v =2s"(t)s(t) = 2x" (t)PBlBTPAx(t) + BT PAMA(0)x(t) + BT P(B + AB(c))u(t) + Df (t)]

= 2x7 (0)PB|B" Pdx(t) + BT PBH(0)x(t) + BT PB(I,, + E(0))u(t)+ B PBF(c) £(1)] (1.42)
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= x (6)\PBB" PA+ A" PBB" PJs(t)+2x" (1)PBB" PBH(c)x(t) ~2k|[x(t)|s” (6)B" PB(1,, + E(5))

255" (1B PB(L, + (@)~ + 267 (1)B” PBF (0 £ (¢)

sl

Since

2h(1=17) Ay (B PB) (o) [5(0)] < 2K (o) s" ()87 P, *’“"”ﬁ

< 2k(1417) A (B" PB) | x(0)|| s @) ;

‘max

(B" PB)|s(t)| < 265" (t)B" PB(I,, + E(a))ﬂ <25(0+n)A,, (B"

26(1-n)A
( 77) ||S(t)|| max

min

25" (1)B" PBF (0) f () < 2 f O,y (BT PB)|s (1)
and

2x" (t)PBB" PBH (0)x(t) = 25" (t)B" PBH (0)x(t) < 2 pA,,, (B" PB)|s(0)||x(®)|

max

Then

V(s(t)) <x" (1)( PBB" PA+ A" PBB" P)x(1)

+ 2020 (B PB) [s@)]|x(0)]  =2k(1=17) A, (B" PB)|x(0)|||}s(2)|

—25(1=17) A (B" PB) |5(0)]|+ 2 f OApyex (B PB)|s(2))|

Since the following matrix inequalities hold:

[s@)|=|B" Px(0)| <[ B" P |x(0)] = @] x(2)]

and — ||x(t)|| <

O o

Then
~2(1= 1) Ay (BT PB) ()50 < ~200k(1=17) 2, (BT PB) [s(0)f

=2wk(1-m)A,;, (B" PB)x" (t)PBB” Px(t)
Therefore
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(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)



V(s(t)) < x7(f) [PBBTPA + A" PBB" P+2pa),, (B"PB)I,
~23k(1-17) Ay, (B" PB)PBB' P (1)
=2 8= A5 (B PB)~ [ O (B' PB) |||

=" (OX(0)~Qs(0)] £ ~ A Q)X ~Qs(2)|

<A (0 )||s(t)||2 - Qs(t)]| < -QJs(t)] <0 (1.50)

if the conditions (39), (40) or

@ = 0,2, (@)]2 0 (1.51)

Q=2[5(1-n)A,, (B" PB)— (02, (B" PB)|>0 (1.52)

min 'max

are satisfied. Therefore, we conclude that the asymptotically stable sliding mode is always
generated on the s(t) =0 (38) defined for (1), (37). In other words, the sliding manifold s(t)=0
15Ol

(38) is reached in finite time and reaching time can be evaluated as ¢, < .

Q

Theorem 2 is proven.

1.5.2 Global stability conditions for matching and mismatching cases

Now we can derive the global asymptotical stability conditions for the closed-loop
matched/mismatched perturbed system (1), (37), (38) with respect to the state coordinates x(t).
The following theorem summarizes our stability results.

Theorem 3: Suppose that Assumption 1 holds. Then the multi-input system (1) with matched
parameter uncertainties and matched external disturbances driven by wvariable structure
controller (37), (38) is robustly globally asymptotically stable, if the following conditions are
satisfied:

PA+ A" P+2pol, —2w,k(1-n)PBB" P=-0 <0 (1.53)
5:& (1.54)
(1-n)

Proof: Choose a Lyapunov function candidate as:
V(x(0) =x" (0)Px(t) (1.55)
where P is a positive definite matrix.

The time derivative of (55) along the trajectory of the system (1), (37), (38) can be calculated
for both cases similar to proofs of Theorem 2:

V(x(0) < —x" (0)0x(t) ~ 2[5~ 1) — fO]|s (@) € ~Aaain @5 @)|” 2[5 = 1) = £0]}50)|
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=—|x(0)* ~Qst)]| = ~@|x(0)|* <0 (1.56)

if the conditions (53) and (54) are satisfied.

Therefore, we conclude that the perturbed system (1), (37), (38) is globally asymptotically
stable with respect to the state vector x(t). Theorem 3 is proven.

For mismatching system matrix case the following theorem can be stated and proved similar to
Theorem 3.

Theorem 4: The multi-input system (1) with mismatched parameter uncertainties and matched
external disturbances driven by variable structure controller (37), (38) is robustly globally
asymptotically stable, if the following conditions are satisfied:

PA+ A" P+2aA,,, (P), —20,k(1-7)PBB" P=-0 <0 (1.57)
s=_10 (1.58)
(=m)

1.5.3 Robust B-stability conditions
Finally, let us derive the robust g -stability conditions for system (1), (37), (38). This
controlled system, in terms of new state coordinates z(t) is given by (27) for which u(¢) can be
presented as follows:

5(1)
[sl

u(t) = ePu(t) = —eP'Tk||x (0)]| + )] S@) —[k”z(t)” - 5eﬂf]

s

(1.59)
s(t) = e”s(t) = B" Pz (1) (1.60)

The following corollary summarizes our 3-stability conditions.

Corollary 2: Suppose that the Assumption 1 and the condition (53), (54) of Theorem 3 are met.
Then the transformed matched uncertain system (27) driven by transformed controller (59),
(60) has a stability degree >0, if the following conditions are satisfied:

P(A+ B )+ (A+ BI) P+2pol, —2wk(1-n)PBB"P=-0 (1.61)
where Q is a positive definite matrix and

5=t (1.62)
1-7

Proof: Choose a Lyapunov function candidate as:

V(x(1)) =z (¢)Pz(t) (1.63)
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The time derivative of (63) along the trajectory of transformed system (27), (59), (60) can be
calculated as follows:

V(z(1) < -27 (00z(1) = 27 [5(1-m) - £(O)]|F ()]
<2 @) 2O = 2" [ =1~ 7(O) || ()] (1.64)

=00 - Qs ] =-@ =) <0

if the conditions (61) and (62) are satisfied. Therefore, we conclude that closed-loop
transformed system (27), (59), (60) with matched perturbations is globally asymptotically 2 -

stable with respect to the new state coordinates z(t). Corollary 2 is proven.
1.5.4 Robust stabilization control algorithm 2

The sufficient stability condition can be transformed into standard algebraic Riccati equality
and combined variable structure can be obtained by solving an ARE.

Taking into account lover bound of evaluation (12) and (22) condition (53) can be rewritten as.

A"P+PA+PBB"P+ p*I —2w,k(1-n)PBB"P=-Q (1.65)

Letting

pI+0=0,, p* <1 (1.66)

=1 (1.67)
o, (1-1)

where Q, is a positive definite symmetric matrix.

Then, condition (65) can be reduced to standard ARE:
A"P+PA-PBB"P+Q, =0 (1.68)

Now, control algorithm (37), (38) can be obtained by following steps:
e The parameters A, B, D, a, p, f, 6 and 5 are given.

Solve ARE (68) for given Q, by using MATLAB command.

e  Check condition (53)
e Find k from (67)
e Find § from (62)

e  Obtain control algorithm from (37)
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1.5.5 Design example 2: Variable structure control for F-16

Consider variable structure controller (37), (38) design for F-16. F-16 linearized lateral
dynamics at the nominal flight condition with the parameters is given in Example 1. Variable
structure control design for lateral-directional F-16 aircraft can be fulfilled by the following
steps:

e  Solve the matrix inequality MI (53) (or ARE (68)) by using MATLAB programming:

clear
cle
format long
A=[-0.322 0.064 0.0364 -0.9917 0.0003 0.0008 0;
001 0.0037 00 0;-30.6492 0 -3.6784 0.6646 -0.7333
0.1315 0;8.5396 0 -0.0254 -0.4764 -0.0319 -0.0620 0;
0000-20200,00000-20.20;000 57.2958 00 -1 |;
Lambda=eig(A);
B=[0 0; 0 0;0 0;0 0;20.2 0;0 20.2;0 0];
C=[00057.2958 00-1;0 0 57.2958 0 0 0 0;
57.2958 00000 0;0 57.2958 0 0 0 0 07;
CO=ctrb(A,B);
RankCo=Rank(CO)
OB = obsv(A,C);
RankOb=rank(OB)
t=45
H=[0.2*cos(t) 0 00000;0 0.2*sin(t) 00000 ];
E=[0.2%cos(t) 0 ;0  0.2*sin(t)];
F=[0.2*cos(t) 00 0 0 0 0;0 0.1*sin(t) 0 0 0 0 0];
DeltaA=B*H ;
DeltaB=B*E ;
D=B*F;
a=norm(DeltaA)
ro=norm(H)
f=norm(F)
eta=norm(E)
ft=[0.2*cos(t) 0.2*sin(t) 0 0 0 0 0];
theta=norm(ft)
where
RankCo =7
RankOb =7
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t=45
a=3.43765023911784
p =0.17018070490682

£=0.10506439776355
171=0.17018070490682

6= 0.2000

0 =0.0253
Q=[0.2000000;00.200000;000.2000 0;
00002000,00000200;,000000.20;
0000000.2];
In=[1000000;0100000,0010000;
0001000,0000100;,0000010;00000017];

kl= 10

B1=B*B'*k1
K 0 0 0 0 0 0]
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Bl =1.0e+003*| 0 0 0 0 0 0 0
0 0 0 0 4.0804 0 0
0 0 0 0 0 4.0804 0
10 0 0 0 0 0 0]

P = ARE(A, B, In)

[ 1.9033 0.0367 0.0149 0.1387 -0.0002 -0.0001
0.0367 0.0118 0.0033 0.0027 -0.0000 0.0000

P=1.0e+003* 0.1387 0.0027 0.0001 0.1256 -0.0001 -0.0001

-0.0001 0.0000 0.0000 -0.0001 0.0000 0.0000

Peig = eig(P)

0.0149 0.0033 0.0011 0.0001 -0.0000 0.0000 0.0002

-0.0002 -0.0000 -0.0000 -0.0001 0.0000 0.0000 -0.0000
-0.0000
| 0.0177 0.0006 0.0002 0.0040 -0.0000 -0.0000 0.0004

0.0177 |
0.0006

0.0040

Peig=1e+3 *[1.9151 0.1149 0.0119 0.0002 0.0001 0.0000 0.0000]'

o =sqrt(max(eig(P*B*B"*P))) = 5.2798
@, =1/0Omega = 0.1894
k=(k1)/(2*Omegal *(1-eta) = 31.8130
Pline=P*B*B"*P
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23.0237 3.1626 0.9849 9.5205 -1.0429 -0.4301 0.4688 |
3.1626 0.5696 0.1840 0.6928 -0.1759 0.0203 0.0548
0.9849 0.1840 0.0597 0.1855 -0.0564 0.0102 0.0166
Pline=| 9.5205 0.6928 0.1855 6.7351 -0.2825 -0.5392 0.2375
-1.0429 -0.1759 -0.0564 -0.2825 0.0551 0.0003 -0.0189
-0.4301 0.0203 0.0102 -0.5392 0.0003 0.0547 -0.0144
0.4688 0.0548 0.0166 0.2375 -0.0189 -0.0144 0.0102 |

Plineeig=eig(Pline)
Plineeig=[27.8764 2.6317 0.0000 0.0000 0.0000 0.0000 0.0000]

Lambdamax=max(Peig) = 1.9151e+003
BtransP=B"*P

-4.4365 -0.7495 -0.2403 -1.1973 0.2348 0.0006 —0.0804}

BtransP =
{—1.8279 0.0888 0.0444 -2.3025 0.0006 0.2339 -0.0614

47435 0.0119
B'PB = B*P*B =
0.0119 4.7238

4.7491
4.7182

B'PBeig = eig(BtransPB)={

o =f*theta/(1-eta)= 0.0253
MI=A"*P+P*A-k1*Pline+In

[-0.6519 -0.0161 -0.0060 -0.0486 0.0001 0.0000 -0.0063 |
-0.0088 -0.0002 -0.0001 -0.0006 0.0000 -0.0000 -0.0001
-0.0041 -0.0001 -0.0000 -0.0003 0.0000 -0.0000 -0.0000

MI=1.0e-006*| -0.0408 -0.0011 -0.0004 -0.0030 0.0000 0.0000 -0.0004
0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000

| -0.0059 -0.0001 -0.0001 -0.0004 0.0000 0.0000 -0.0001 |

Mleig=eig(MI)
Mleig=1.0e-006* [ -0.6552 0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 ]

which is a negative definite matrix.

Thus, all design parameters are obtained. System (1), (37) for F-16 is simulated by using
Matlab-Simulink. Block diagram of this system is shown in Figure 1.4. Time responses, control
and switching functions are shown in Figure 1.5, 1.6 and 1.7, respectively. Simulation results
show that the control performances in general are satisfactory, for example settling time is 10
sec. Note that, settling time for variable structure controller faster than for linear controller.
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Figure 1.4 Robust variable structure control scheme for uncertain multi-input systems

56



1500 : :

1000
50
=
=g 5 10 = 20

tl=ec)

Figure 1.5 State responses

100 T : 5
a |:| BoonnHooononnoaonnananananoaone
=5
oo ............ ............ .............
oonlhdo L o50000c0a00s ]
200 i i L
o 5 10 15 20

t{zec)

Figure 1.6 Variable structure control functions

a0 T : 5
= Oy
w1
sollle ............. ............. .............
oo ............. ............. ............ j
450 i ; i
0 5 10 15 20
t(=zec)

Figure 1.7 Switching functions

57



1.6 Conclusions

We have designed two types of very simple robust full state feedback controllers: 1) combined
linear and 2) combined variable structure controllers design techniques for stabilization of
multi-input linear dynamical systems with matched/mismatched but available upper norm-
bounded unknown parameter uncertainties subject to matched but upper norm-bounded external
disturbances are advanced. The conventional equivalent control term is not used in second
controller because equivalent control term needs to use the matching conditions and unavailable
parameter uncertainties. The robust global asymptotical stability, [B-stability and sliding
conditions are parametrically obtained by using Lyapunov V-function method and
systematically formulated in terms of some matrix equations. The robust controller’s
computational algorithms are presented. By these algorithms stability conditions are reduced to
standard algebraic Riccati equation (ARE) problem. Two design examples with simulation
results for jet fighter F-16 are given to illustrate the usefulness of the obtained results.
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CHAPTER 2

Sliding Mode Control of Aircrafts and Missiles

2.1 Introduction

This chapter consists of two paragraphs. In first paragraph a robust flight control laws based on
variable structure control (VSC) theory and Lyupanov V-function method are designed for a
simplified aircraft model F-18. A min-max control (MMC) and VSC laws are derived, for multi
input multi output (MIMO) systems with matching plant uncertainties, input nonlinearity and
external disturbances. Two types of robust feedback controllers MMC and VSC for uncertain
MIMO systems are considered. For the both cases the existence conditions of a stable sliding
mode and robust asymptotic stability in large of uncertain MIMO systems by MMC and VSC
are investigated. For the design of a MMC and VSC, measurable states and sliding surface is
chosen so that the zero dynamics of the system are stable. An application of tracking and
positioning of VSC of longitudinal dynamics is presented. Finally, simulation results are
presented to show the effectiveness of the design methods. In second paragraph, the guided
missile system is considered as SISO plant with parameter perturbations. The structure
of the missile system examined in this work is not suitable for the use of classical linear
controllers. On the other hand the missile system should possess good performances,
such as zero steady state error, less settling time etc. Standard VSC control laws fail to
control the steady state error due to the structure of the system matrices. For this reason
we have proposed two new robust output integral sliding mode controllers and design
procedures. An integrator is included in the sliding function, which results the reduction
and removal of the output error. The total control consists of two parts: 1) equivalent
control part which compensates the nominal regime of the missile system and 2) VSC
part which compensates the parameter perturbations (changes in Mach number, altitude
and mass of the vehicle etc) of missile system. We have derived a new constructive
sliding and stability conditions for both cases by using Lyapunov's direct method.
Computer simulations indicate that this approach yields a satisfactory control
performance.

2.2 Robust sliding mode control systems for the uncertain MIMO aircraft model
F-18

2.2.1 Brief analysis of flight control systems

The development of modern automatic control systems has played an important role in
the growth of civil and military aviation. Modern aircraft include a variety of automatic
control systems that aid the flight crew in navigation, flight management and
augmenting the stability characteristics of the airplane. Aircraft stability and the
analysis and synthesis of conventional and modern flight control systems are treated in
the classical text-books [1-4]. Flight control law design techniques primarily use linear
control theory. The aircraft dynamics are linearized and controllers are designed for a
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variety of flight conditions. However, insurance of high control performance using the
classical control systems for the plant which has parametrical uncertainties and external
disturbances, nonlinearity, and time delay is a still difficult problem.

In recent years, variable structure control with sliding mode is successfully applied to a
flight control system with plant uncertainties [5-15]. When the system is on the sliding
surface, the motion of system has fast response and good transient performance
characteristics and it is insensitive to plant parameters variations and external
disturbances. To take these advantages, modern flight control systems have been
designed using the conventional and robust VSC techniques [14-31]. In [5], classical
VSS theory applied to design a SISO flight control system. A variable structure
approach to robust linear control of vertical takeoff and landing (VTOL) aircraft was
considered in [6]. A nonlinear flight control system via sliding method was designed in

[8].

Base on VSS theory, a discontinuous control law was derived, which accomplishes asymptotic
output tracking in the closed loop nonlinear MIMO system in spite of the presence of parameter
uncertainty [7]. This design approach was applied to synthesis nonlinear flight control system
for asymptotically decoupled control of roll, angle of attack, and sideslip. It was assumed that
roll angle and angle of attack represent the basic lateral and longitudinal variables the pilot
would like the control, while there are circumstances where the pilot would like to sideslip
without rolling and pitching. The chosen sliding surface are linear functions of tracking error,
its derivative and integral of the tracking error. The simulated responses for the nominal system
show that rapid, simultaneous lateral and longitudinal maneuvers can be performed in the
presence of uncertainty in the aerodynamic coefficients [7]. Variable structure robust flight
control system for the simplified F-14 aircraft model was designed in [9]. For MIMO uncertain
systems a VSC law was derived. For the derivation of the control law, a choice of a sliding
surface is made so that the zero dynamics of the system are stable. The linear lateral and
longitudinal dynamics of the F-14 are decoupled. A VSC law with linear switching function
was derived for the control of the roll angle, lateral velocity and yaw rate. Thus, VSC is
successfully designed for the flight control system. However, sliding surface include higher
order derivatives of the tracking error and may cause instability due to unmodelled system
dynamics. The development and set point sliding mode controllers including saturation for a
multi input nonlinear non-minimum phase PVTOL aircraft with external disturbances were
considered in [10]. The aircraft state was determined by the position, x, y of the aircraft center
of the mass , the pitch Euler angle, 6, of the aircraft relative to the x axes, and the
corresponding velocities X, y,6. The control inputs are u;- the trust, and u, the rolling moment.
A dynamic sliding mode control approach was employed for the aircraft system. The
asymptotical stability robustness of the resulting closed — loop zero dynamic system and sliding
reachability condition were successfully analyzed by using Lyapunov function method.

A sliding mode control was applied to a nonlinear system representing an air-to-air
missile target interception process in [11]. Missile dynamics, control actuator dynamics,
target dynamics, and interception model dynamics grouping together all the dynamical
equations, a nonlinear 8th order model was obtained. A novel method was proposed
incorporating the theory of VSC which yields excellent performance and desirable
robustness properties. The existence condition of the sliding mode is formulated
alternatively in terms of the motion of an equivalent control. Advantages and
disadvantages of SMC for missile target system were analyzed. The pursuit, pure
proportional navigation, true proportional navigation and proportional navigation
candidates of switching surfaces, which are fairly simple but nonetheless have practical
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interpretations, were examined. It was shown that the proposed sliding mode controllers
for nonlinear missile target system have very good transient performance. In [12], an
equivalent sliding mode controller was designed for longitudinal time-variant motion of
aircraft.

VSC, associated with model reference following, was designed for a helicopter flight control
system [13]. For a given forward velocity, linearized state description was expressed in the
MIMO time variant standard form, where 8 states correspond to a physical variables, namely: u
being to the forward velocity; v, the vertical velocity; v the lateral velocity; € and ¢ the pitch
attitude and pitch rate; ¢ and p roll attitude and roll rate; and r the yaw rate. The control defined
by 6 and 6, are respectively, the longitudinal and lateral cyclic pitches and 6, is the tail rotor
pitch. From 8 states, only 5, the attitude and rates, can be measured and the outputs to be
controlled are &, », ¢. The performances obtained here can be favorable compared, to many
other conventional control schemes. In [14], a new robust multivariable model reference control
based on sliding mode scheme and Lyapunov function has been presented. The strategy
requires only output information and utilizes a sliding mode observer to obtain estimates of the
plant states. The closed loop-loop system has been proved to be stable and invariant with
respect to matched uncertainty. The practicality oh the scheme has been demonstrated by
considering a realistic helicopter control problem. It has been shown that a single controller can
provide good performance across the full flight envelope. Thus, the given brief survey of papers
and books [5-16] show that the VSC with sliding mode in recent years was successfully applied
to design of many modern SISO, MIMO, time-invariant, time-varying and uncertain flight
control systems. There fore, the design of VSC for modern flight control systems is an
important problem. Here, of course, all problems are not solved, but the robust control via
variable structure with sliding mode and Lyapunov techniques are basic instrument for the
engineering design of modern flight control system. Therefore, now briefly analyze the method
of robust control synthesis for uncertain systems.

In recent years, different approaches to the problem of robust control design for
uncertain dynamical systems have been proposed. If bounds on the uncertainties are
known then in such a case deterministic approach to the controller synthesis is a viable.
Recently, two major approaches to the deterministic control systems are given [22]:

1)  Variable structure control methods [17-21, 27-33].
2)  Deterministic control using Lyapunov functions [22, 23, 26]
3)  Combined methods [20, 24, 25, 34].

As shown in [24] the basic difference between the Lyapunov min-max control (MMC)
and the variable structure control (VSC) is in their design methods. As explained above,
the VSC is designed to stabilize the system via a prescribed sliding mode, where as the
Lyapunov control is designed via the second method of Lyapunov and the concept of
generalized dynamical system. Since a Lyapunov control design is, in general, simpler
than a VSC, it seems reasonable to obtain a Lyapunov control design for a VSC. We
will show that, both design methods can be successfully be applied to synthesis of
uncertain systems.

In this paper a robust flight control laws for a simplified F-18 aircraft model are
designed via variable structure and Lyapunov function. Two types of feedback
controllers: MMC and VSC for MIMO systems with matching plant uncertainties,
input nonlinearity and external disturbances are considered. For both cases the
existence conditions of a stable sliding mode in the systems and robust asymptotic
stability in large of uncertain MIMO systems by MMC and VSC are investigated. The
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aircraft model has parametric uncertainty and wind gust disturbance inputs. Since the
linearized longitudinal and lateral dynamics are decoupled, the controllers design can
be performed separately for longitudinal and lateral control. For the design of a MMC
and VSC a judicious choice of a measurable state vector and a sliding surface is made
so that zero dynamics of the system are stable. This work is limited to the design of a
longitudinal control laws though the design technique can easily be applied to the
lateral dynamics. Finally, simulation results are presented to show the effectiveness of
the design methods.

This works is organized as follows. The F-18 longitudinal and lateral dynamics and
flight control problem are given in section II. The system description and assumption
considered in section III. The design of the robust MMC with stable sliding mode
presented in section IV. The design of the robust VSC with stable sliding mode is
presented in section V. Section VI presents a variable structure longitudinal flight
control. Simulation results are presented in section VII.

2.2.2 Longitudinal and lateral dynamics of F-18

The aircraft model described in this section is based upon a modified version of the F-
18 aircraft and has been taken from [35].

The decoupling linearized longitudinal and lateral/directional linear state dynamical
equations of motion of the F-18 aircraft are given by [35]:

“_4 |%lip | o Q22.1)
q — “long q long 5PTV e

where
A — {Z“ Zq :| B _{Z&z Z§PTV:|
lon, - ’ ong
¢ M a M q one MaE MéPTV
e _ [-0.2296  0.9931 ] g _ [-0.0434 -0.01145
e 10.02436  —0.2046 e -173 0 -0.517
st _ [-0.2423  0.9964 | s _ [-0.0416 —0.01141
e -2342 -0.1737] e -2.595  -0.8161
s _ | ~1.175 09871 wois | —0.194 =0.03593
1 -8.458 —0.8776 e 1-19.29  —-3.803
and
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B
p

where

A

B

M3h10 _
Alat/dir -

M3h10 _
Blat/dir -

M5h20 _
Alat/dir -

M5h20 __
Blat/dir -

lat | direc —

lat | direc —

B 94

= Alat/direc p + Blat/direc 5R

YEDT Y&A YﬁR YJRTV Y&YTV
L6DT Lé‘A L(SR Lé‘RTV L()'YTV
N&DT Né'A Né'R N&RTV N&YTV

[-0.1292  0.1738  —0.9833
-8.643  -1.129 0.5986
1.519 -0.01327 -0.1105

b

[-0.006987  5.096 0.1968 |
—-0.005249 6.075  -0.1522
0.01285 0.51 —-0.3872
0 0.1781 0.0008849

| 0.006894  0.02478 —0.3397 |

-0.1354 0.09036 —-0.949
-10.37  -1.469 0.5126
2281 —0.01482 -0.1277

b

[ —0.01091 9.93 0.2757

-0.005695 12.12 -0.2797
0.01555 0.9416  —0.7419
0 0.3977 -0.001175

0.00489  0.02817 —0.3861 |
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-0.1275  0.0679  —0.997
AP = 1192 -1.404 04283 |,
2.776  -0.01099 —0.01240

[ —0.01108 1254  0.3656
—0.0005726 1427  —0.2088
BMI0 =1 0.01428  1.085  0.9165
0 0.9813 —0.005925
0.007537  0.0583 —0.7992 |

where

a angel of attack

q pitch rate

o angle velocity of attack

g pitch acceleration

O symmetric elevator position

Oppy  symmetric pitch thrust velocity nozzle position
f angle of sideslip

p roll rate
r yaw rate

,B angle velocity of sideslip

p roll acceleration

1 yaw acceleration

O pr asymmetric elevator position

0, aileron position

0, rudder position

Orpy asymmetric pitch thrust vectoring nozzle position

Oy,  yaw thrust vectoring nozzle position

m3h.26
long

kft[35]. It should be noted that lateral dynamics assuming that the angel of attack is constant,
that is: the lateral dynamics change as the angel of attack varies.
Thus, we can write the perturbed longitudinal and lateral state equations of follows

and the nomenclature, for example A , 1s the longitudinal state matrix at Mach.3 and 26

x=(4+AA)x+(B+AB)u (2.2.3)
where x=[a ¢] ,u=[6, &, ] .4%: (2x2)and B*: (2 x 2) are matrices for

. . . T
longitudinal motion; x = [ﬂ p r] R

u= [5DT O, Or Oy Oy ]T ,A*:(3x3), B*: (3 x 5) are matrices for lateral motion;
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A*=A+AA, B¥*=B+ AB.

The flight control task is to track the reference trajectories x(¢) — x, (¢). Suppose a reference

trajectory x, (¢) (for tracking control) or x, = const. (for position control) are given. We are

interested in designing the MMC and VSC such that, stable sliding mode can be generated and
closed loop system states are asymptotically stable.

2.2.3 System description and assumptions

Consider the following uncertain dynamical system

X(t) = (A+ A)X(E) + £, %) +(B + ABYu(t) + Dw(?) (2.2.4)

where x(¢) € R"is the measurable current value of the state, x(¢#) € R™is control function
| < 6 where |||| is the Euclidean

w(t) € R is the external disturbance vector bounded by ||w(t)

norm of a vector, @ = const, A, B, D are constant matrices of appropriate dimensions, with B
of full rank, and the matrices A4, f(¢,x),AB and w(?) represent uncertainty of the linear

portion, the nonlinear input uncertainty of the system which is coupled with state variables, and
the input matrix uncertainty respectively. System matrix A in general is an unstable matrix.
We now make the following standard assumptions.

Assumption 1: (Matching condition): The uncertainty matrices AA,ABand D satisfy the
following rank conditions [26, 36, 28, 29, 37]

rank[B ‘AAT ] = rank[B AB] = rank[B fD] = mnk[B]

where x =T x,T is the matrix of the basis vectors of the reduced order sliding subspace. Or for

all uncertain element o € Q there exist matrices of appropriate dimensions (), E (), F () and
g(.), such that [23, 24]

AA(O')z BH(O') ; AB(O')z BE(O')
D(w)=BF(o); f=Bg (2.2.5)

where (2 is compact subset.
From the structural assumption, all uncertain elements can be lumped [23, 38] and the system
(4) can be rewritten as

x(t)=Ax+ B(u +mn), x(t,)=1x, (2.2.6)
where 7 € R™ represents the system total uncertainty or total perturbation [39] and is given by:

n=H(o)x+E@cu+Flow+g, ceQ
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Assumption 2: There are positive constants p, and o, such that [38]

||77(t,x)|| < pt,x)=p, + p, ||x|| (2.2.7)

In addition to Assumption 1 and 2 we also assume that the traditional assumption the pair (4,
B) is complete state controllable is also valid.

We now consider system (6). Let x(t) be the solution of (6) at ¢ forced by {u(t), 77(1‘)}. The basic
stability question is: find a control strategy u(x(¢)) such that, the system has a sliding mode and
the origin is uniformly asymptotically stable in the large.

For convenience, we now introduce the following notations

M= min”E(am ; h= max||H(0']|; f= max”F(O')

; 7=HBTP

b=

,g, =const >0 (2.2.8)

s @2 < &

where |||| is the spectral norm of the matrix. We shall use WT,/I(W), A (W), Aax (W) tO

denote the transpose, eigenvalue, minimum eigenvalue and maximum eigenvalue of a square
matrix W respectively.

2.2.4 Combined min-max control

Theoretical developments and the general way for the design of discontinuous min-max control
and variable structure control of various uncertain systems and the derivation of sliding and
stability conditions for the systems are known and available in the literature as we have shown
in Section I. But uncertain systems in this combination, namely together with parameter
perturbations (AA), input matrix perturbations (AB), input nonlinear uncertainties ( f (t,x))
and external disturbances (w(f)) have not been considered in literature. In this section we
propose a combined min-max control law. Thus, we need to investigate complete uncertain
dynamical system with parameter perturbations, input nonlinearity, and external disturbances
(4) driven by new combinations of discontinuous controllers, according to the sliding mode
control theory. The sliding mode in min-max control and in variable structure control possesses
attractive advantages e.g. fast response, good transient performance, and insensitivity to
variation in plant parameters and external disturbances compared to linear control strategies,
including robust /. To take these benefits, we design two type min-max controller and
variable structure controller to stabilize uncertain system in robust manner. To stabilize the

uncertain system (6), we first choose a simple robust feedback MMC law, as recommended in
[23-25, 21, 29], as follows

t

u(e) = —[k|x(0)] + 5]% (22.9)

where k and o are scalar design parameters and s(¢) is a switching function to be selected.
We first discuss the behavior of the sliding mode. Note that the unit control (9) is in
fact a sliding mode control which is discontinuous on the sliding surface.

s=B"Px (2.2.10)
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where P =P’ > 0is any positive definite matrix. Provided that unknown total disturbance
denoted by the term n(x,t) can be rejected by the choice of the scalar feedback gain parameter

k. The mxn matrix C = B" P is of full rank and the matrix CB = B" PB is non singular.
After selecting the switching surface, the next step is to choose the scalar feedback gain £ and
P such that the sufficient condition of a sliding mode [40,17]

57§ <0 (2.2.11)

is satisfied and the closed loop system dynamics on the sliding mode is stable.
The direct switching function approach for scalar was proposed in [40],

s §<0 (2.2.11a)

is global. This condition is sufficient but not necessary. A similar sufficient condition that is
local in nature was proposal in [41],

lims <0 and lims>0 (2.2.11b)

s—=>+0 s—>=0
a combined approach [50] is

lims s <0 (2.2.11¢)

s—>0

there are various global reaching conditions which is analyzed in [18]:
The Lyapunov function approach

V=%STS, V=s"$<0 when s#0 (2.2.11d)

which is equivalent to (11). Finite reaching condition is given [18] as

V<—c—kV (2.2.11¢)

where & and k are positive scalar.
The reaching law method [18]

s =—Qsign(s)—Ks (2.2.11g)

where Q and K are diagonal matrices with positive elements.
Another reaching condition [51], [52] is

1d , s(0)

——S8 <SS, Lpuen S 2.2.11

2 di n h n ( f)
Where 7 is a positive constant.
The power rate reaching law for scalar case [18] is

§ = —k|s|a sign(s), 0O<a<l (2.2.11h)
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Similar combined reaching condition for our multivariable case can be rewritten as follows:

, <M (2.2.11K)

reach —

s's<nls

This inequality implies that the trajectory reaches the sliding surface in finite time ¢,,,, and
remains on the sliding surface. Note that, the sufficient condition for the existence of a sliding
mode on switching surface, which possesses an attraction region, also satisfies the sufficient
finite reaching condition. In [53] it was established that, any trajectory starting from any initial
value 5(0) at time ¢ = 0, reaches the switching surface s(¢) = 0 in finite time

LI M) (2.2.11m)
n k
by the reaching law [53]
§ =—ns +k sign(s)] (2.2.11n)

which similar to (11g), (111), (11k).

Another reaching condition similar to (11h) and evaluation of finite hitting time was analyzed
in [54]. After this brief analysis of sliding conditions we now summarize our results for a
sliding mode in the following Lemma.

Lemma 1: Suppose that Assumptions 1, 2 and following conditions are valid:
AP+ P+ 2y, (B PBI — 2k, (1+ 1) A, (BT PB)P +2g 7 (BT PB)I =-0 (2.2.12)
where P = PBB” P is a positive semi-definite and Q is a positive definite matrices.

104, (B" PB)
(1+ 1) (B" PB)

5= (2.2.13)

Then the sufficient condition for the existence of the sliding mode in the uncertain system (4) or
(6) is satisfied by employing the control law (9).

Proof: Define a positive definite Lyapunov Function

V=s's (2.2.14)

Its time derivative along the trajectory of the system (4) or (6) can be calculated as follows
V=5"s+s"s =" ()A"PB+x" ()" (c)B"PB +u” (I + E) B' PB
+w' (¢)F"(c)B" PB + g" (t,x)B” PB]B" Px(r)

+x"(£)PB|B" PAx(t)+ B" PBH (0 )x(t)
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+ B PB(I + E)u(t)+ B" PBF (o )w(t) + B" PBHY(t,x) | (2.2.15)
= x"(c\ 4" PBB" P+ PBB" PAN(t) + 2x" (t\PBB" PBH (0 )x(r)
+2x" (¢)PBB" PB(I + Eu(t) + 2x" (t)PBB” PBF (o )w(t) + 2x" (t\PBB PBy (1, x).

A sufficient condition for the existence of a sliding mode is V' =s” §<0 for s#0. The
substitution of (9) into (14) yields

V:xT(t)(ATﬁ+13A)x(z)+2sT(t)BTPBH() )= 2k |x(1)]s" ( (1)B"PB(I+E)_
(2.2.16)

~25s" ()BTPB(1+E) T(¢)B" PBF (c)w(t)+2s" (t)B" PBg(t,x)

<x" () A"P + PA(t)+ Zh/lmax (B PB)s(eY[x(t)| - 2% (1 + )4, (B" PB)|x(e |5 )]

—25(1+ 1) (BT PB)s()| + 2,162, (B PB)|s(¢)| + 220 e (B” PB s (¢ )| x(0)|

Since
s =|8" Px(v)] < |B" PJx@)] = #x0) (2.2.17)
Hence
et < sl =] @218)
Then (16) becomes

V = x"(A"P + PAN(t) + 214,y (BT PB)|x(0)| = 2k7,(1+ ) A (BT PB)s ()]

max min

(BTPB)||x(t)||2 =26y, (1+ 1) Ay, (B" PB)|s(0)| + 2 102

+ Zg(ﬂ/ﬂ« ‘min max (BTPB)”S(t)”

max

= X ()| A"P + PA+2hyA,, (B" PB)I - 2ky,(1+ ) A, (B" PB)P

max ‘min

(BTPB)I]x(t)—2[§(1+,u)/1 (B" PB) - ft%max(BTPB)hs(t)”

‘min

+2g,74

max

:—xT(t)Qx(t)—2[§(1+,u)/l (B"PB)- 164 (BTPB)]|s(t)||

‘min max

(2.2.19)
<—y2s" (00 s(t)— 2|51 + ) A, (BT PB)— f04,,, (B" PB)|s(2)|
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<y @)s@) <0

When conditions (12) and (13) of Lemma 1 are satisfied, inequality (19) reduces to V <0 and

we conclude that stable sliding mode exists on all switching surfaces in dynamical uncertain
system (4), (9), (10). Therefore, system is asymptotically stable relative to the sliding surface
s=Cx=0.

According to equivalent control method [17, 26, 28, 29], the motion in the sliding mode may be
determined from the defining conditions = BTPx(t) = 0. Differentiating with respect to time

and inserting the value of X given in (6) gives B’ PAx(t)+ B" PBu(t)+ B" PBn=0. Hence, the

equivalent control u,, may be determined in the linear feedback form
u,,(¢)=—(B" PB)" B" P(4x + B1) (2.2.20)

This control term is unavailable because of uncertain parameter 7. But, u,, for the nominal

system can be presented as:

u, (t)=—(B"PB)" B PAx(r) 2.221)

where G = (BTPB)f1 B P4 is the equivalent control feedback gain matrix. Substituting
formally (17) into (6), we have

i(t)= [1 -B(B'PB)’ BTP}(Ax-I— By)

(2.2.22)

B"Px(1)=0
It is well known that sliding motion is insensitive to the total system uncertainty, if the
invariance or matching conditions (5) are satisfied [16, 26, 28, 29, 36]. Then,

Tpp\! BT

[[—B(B PB)'B P}Bﬂ(t,x)z 0.
Therefore, a sliding motion can be expressed as:

it)= [1 —B(BTPB)_lBTP}Ax(t) = (4-GA)x(t) = 4,x(t) (2.2.23)
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The transient motion of the system therefore consists of two independent stages: a) (preferable
rapid) motion bringing the state of the system to the switching surface in which sliding occurs,
and a slower sliding motion, in which the state goes towards the origin while remaining in the
sliding subspace. In view of (23) it can be seen that the sliding motion was described by linear
system equations. Sliding surface is to be designed to provide not only to guarantee the
existence of stable motion, but also accomplishes the desired transients (such as given
eigenvalue placement) in sliding mode. This problem successfully investigated in [28], [29],
[45]-[47]. According to this design sliding surface method, by an appropriate choice of the gain
matrix G, the eigenvalue of matrix 4, in the linear sliding mode equation (23) may be
arbitrarily placed because the pair (4, B) is completely state controllable. Moreover, note that
this design of desired sliding motion problem may be solved via well known pole placement
method of linear control system design theory. The present design techniques begins with a
determination of the desired closed-loop poles based on the transient-response, such as speed,
damping ratio, or bandwidth, as well as steady-state requirements. Let us assume that the

desired closed-loop pole locations are p = A,,4,,....4, then the desired characteristic equation
of closed-loop system becomes

OA)=(p-A4Xp-2)dp=24,) =p" +ap"" +...%a, p +a,= (2.2.24)

Note that, CD(Aeq): 0 since the Cayley-Hamilton theorem state that A, satisfied its own

characteristic equation (24). According to the Ackermann’s formula [48], [49], the state
feedback gain matrix G may be determined as follows:

G=[0 0..0 1B 4B.4" B]'®(4) (2.2.25)

which is free from plant uncertainties.

We now examine the robust global asymptotical stability in large of the closed loop uncertain
dynamical system (4), (9), (10). The following Theorem 1 provides our robust stability result.

Theorem 1: Suppose that Assumption 1, 2 and conditions of Lemma 1 are met. Then the
uncertain system driven by combined min-max controller (9), (10) is asymptotically stable if
the following conditions are satisfied:

A" P+ PA+2hyl —2ky,(1+ u)PBB" P +2g,/0 =—Q (2.2.26)

where P and Q are positive definite matrices

(2.2.27)
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Proof: We define a Lyapunov function candidate as

V(t)=x"(¢)Px() (2.2.28)

where P > 0 is a solution of algebraic Riccati equation (26)

The time derivative of V along the trajectory of system (4), (9), (10) can be evaluated
similar to proofs of Lemma 1 as follows:

14

i (0)Px(e) + " ()P (1)
(AT P+ AN () + 25" (¢ )PBH (0 )x(t) + 2x" (¢)PB(1 + Eulz)

T

x (@
—2[5(1+u)—f6’]|s(t)||

=—x" (£)ox(t) - 2[5 (1 + p) — fO)s(t)| < Ao (Q)s(t)] <O (2.2.29)

+2x" (1)PBF (o )w(t)+ 2x" (¢)PBg(t,x)
)

|4"P+ PA+ 2hy1 — 2ky,(1+ 1)PBB™ P + 2g,y T]x(¢)

if the conditions (26), (27) of Theorem 1 are satisfied then ¥ < 0. Thus, we conclude that the
closed-loop trajectories of the uncertain system (4) or (6) under the action of the min-max
controller (9), (10) is robustly asymptotically stable in large.

Note that, the conditions for the existence of the sliding motion and the conditions of robust
stability in large are in accordance with each other or the conditions coincide. The conditions
given by Lemma 1 and Theorem 1 in same cases, may state the sane information. But the
condition given by Lemma 1 are derived from the Lyapunov function with respect to the
switching variable s(¢). Where as the Lyapunov function given by Theorem 1 are written with
respect to the state variable x(?). In some cases these conditions may completely coincide. But
this is very rare. If they coincide these design is said to be successful. This fact is another
verification of our results. The Theorem 1 therefore proved.

Thus, we have successfully developed a new constructive sliding and stability condition for
completely uncertain system driven by a simple min-max controller and present there
conditions in term of matrix norm, which are different from the existing conditions in the
literature. The matrix norm provides an easy application of the variable structure control. This
is very advantageous for multivariable systems.

In order to reduce discontinuous control activity (“softening” the sliding mode) we should add
nominal equivalent control term into the min-max controller (9), (10), which allows to make the
sliding inequality less conservative and to reduce the amplitude of discontinuous term. Thus
new modification of min-max controller can be presented as:

u(t)=—(B"PB) " B Pax(e)- [x(r) + 5|4 (2.2.30)

t
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Now, for the control law given by (30) we should derive the sliding and stability conditions. In
general, these are similar to Lemma 1 and Theorem 1. In the next section we will derive the
remaining conditions in term of variable structure control.

2.2.5 Variable structure control

In this section we propose the following “softening” variable structure controller for the
uncertain system (4) or (6):

ulf) = —ﬁ[CB]‘l [Cax(t)+ R¥x(t) + 5 sign(s(?))] (2.2.31)

where the elements ‘¥, of the ( m x n) dimensional matrix ¥ obey the following logical law
o, for s;x;>0

Y. = ﬂ[j for 8;%; <0, (2.2.32)

i=L2.m,j=12.n

s=Cx,C=B"P (2.2.33)

@, and B, are constant coefficients of the matrices & and S, R and O are an ( m X n)

diagonal matrices with elements 7, and o, respectively,

Sign(s) = [sign(sl ), sign(s2 ),...Sign(sm )]T .

Here VSC law usually [17-19, 24-26, 29] consist of a linear equivalent component u, (for the
stabilization of a nominal regime), linear state feedback with switched gains component u,,

(for the rejection of a plant uncertainties) and a relay with constant gain u, (for the rejection
of a external disturbances) which are summed to form u,,,, or multi-structural control[43].

First we consider the conditions for the existence of a stable sliding mode which can be
generated in an uncertain system. Define a Lyapunov function with respect to variable

s(t)

V= %sTs (2.2.34)

and differentiating along the (4), (31), (32)

V =s"s = s"[CAx(t)+ CBH (o )x(¢) + CB(I + E)u(t)+ CBF(c-)w(t) + CBg(t,x)]
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< s"[CAx + CBHx — CAx — R¥x — Ssign(s)+ CBF|6|+ CBG|| |

SR T Y YRR i{zr u\x+5\}|s|

i=1 Jj=1

+s"CBF|0|+s"CBGlA

_sTCB{H+G—%Ra+ﬂ} i . +ﬂ’f| ||xi|—i5i|s[|+sTCBF|H|
i=1

=l j=1

=s"Hx - ZZF % +'B"|s ||x|+sTF|0|

=l j=1

(2.2.35)

where H = CB‘:H+G—%R(OC+ﬂ)},

F =CBF, |6]= UH g(t,.x) <Gy, g, are positive constants,
|x| = Hxl , - ||I +E a)" 1+ ,u) From (35) as shown in [41-44] we conclude that,
if
;’i%ﬂ” > max,, max ‘h i=12..m, j=12...n (2.2.36)
5,20} i=12...m (2.2.37)

are satisfied then ¥ <0 everywhere outside of the sliding surface s = 0. Here l_lij are elements

of matrix H , F |0| = ‘5 “0_ ‘ is constants vector with elements é . Thus, the following Lemma 2

summarizes our results.

Theorem 2: Suppose that Assumptions 1, 2 and the conditions given in (35), (36) are valid,
then a stable sliding mode, driven by the VSC (31), (32) always exist in uncertain system (6).
And now we will study the robust asymptotic stability in the large with respect to the state
variables.

Corollary 1: The uncertain variable structure system (6), (31)-(33) with stable sliding
mode(23) is asymptotically stable in large if the sliding conditions (36), (37) of Theorem 2 are
satisfied.

Proof: Choose a Lyapunov function candidate with respect to the state variable x(z), as follows:
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V()= %xT(t)I_)x(t) (2.2.38)

where P = PBB"P,P" = P is a positive semi-definite matrix.
Then,

V =x" PBBT Px = s" B Px
(2.2.39)

=sTCx< STI-_Ix—Z;‘Z;ig % ;ﬁ” |sl.”xj‘+sTF_’|9|—Z;5i |s,]

i=l j= i=

and we have the same results as (35). So, if the conditions (36), (37) are satisfied, then V<0.
Therefore, VSS (6), (31)-(33) is robustly asymptotically stable in large. Note that, the
conditions of the robust stability fully coincide with the conditions for the existence of
sliding mode in the VSS. As it was stated in section IV these conditions may or may
not coincide. This depends on the selected Yaupon function candidate. We successfully
select the Yaupon function candidate as in (38).

Thus, we have solved the design problem to the end. Because we have derived a new
sliding and stability condition for the uncertain systems with parameter perturbations
and external disturbances by applying a new variable structure controller. Our design
results are presented in terms of matrix norm, which is different from the known results
given in literature.

2.2.6. Longitudinal flight control

According to the design procedure of VSC in section V we consider the longitudinal flight
control for F-18, which has two control inputs and two output variables. This is a typical plant
model of F-18 (38). Our theoretical development of previous sections will be implemented on
this model. It is assumed that the system states « and ¢ are available so that state estimation is
not required.

For the longitudinal motion the tracking error is denoted as «, (¢) and w, (?)

a(t)-a,(t)=a,(1):q()-q,(0)=q.() (2.2.40)

Where «, (t) and o, (¢) are reference trajectories. From (1), the tracking error dynamics and
VSC law have the following form

‘de(t)}z ) [ae@)} 5 {fw Hd,.(r)}_ ) {ae(ﬂ} 24D
4.0 T"le. 0] TS ] 14,0 9,0 -
_ul(t) _ 5E :—L[C nom]_l

| u, (?) Opry 1+ u e
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{|:Ellae (1) +ap,q, (t)} {”1 O:|{‘P11 Y, :||:ae (t)} |:51 0 :||:Sign(sl (t)):|}
¢ “ + + ‘ (2.2.42)
a, o, (1) + a,q,(t) 0 n| ¥, Y,|q( 0 0, || sign(s,(1))

|:S1 (t)} _ (BT;O’"P{O%(Z‘)}: |:Cllae(t) + chqe(t):| (22.43)
5, (1) "] ey )+ g, () -

where

C C a a nom nom 0
C= BIZZZP _ { 11 12} CA™™ = {_11 12} ATlongP+ PATlong = _{(g } (2.2.44)
q,

long —
ay Adp

11

_ ey, for s,(Da (1) >0 - a,, for s (H)a,(t)>0
By for s,(De, () <0 | By, for s,(Da, (1) <0

\le =

{a21 Jor s, (), () >0 N7 {%2 Jor s,H)a (1) >0 (2.2.45)

’ 22 = )
By Jor s,(De, (1) <0 By Jor s,(De, (1) <0
Note that, for the position control o,(2)= a,(t)=const, q.(t)= q.(t)=const, therefore
¢, =0,q,=0.

According to Theorem 2 and Corollary 1, the following conditions must be satisfied for
the existence of a stable sliding mode.

7 a, _ﬂll > h*
| 5 Z
" a, ;ﬂn > )
(2.2.46)
r ay ;ﬂZI > ¥
r Uy ;ﬂzz > B
5,26, ;0,>6, (2.2.47)

,i=12;7=12;

where /* = max; max ].‘hl.].
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I__[=|:Cll clzﬂblnlom b;fm}{hn h12_+|:g11 g12:|

nom nom
Cyr Cp || B DR ||y My | (821 8

(2.2.48)

_’”1 O“:all—l_ﬂll a12+1812_

1

5_0 n || @+ By azz"‘[’)zz_

{91 } | /:’12}{91} (2.2.49)
0, _le S 0,

2.2.7 Simulation results

The complete closed—loop system (41), (45) is simulated using MATLAB. The block diagram
is shown in (1.). the system matrices 4 is assumed in the form of 4=4""+A44, where AA is the
uncertainty matrix with random elements.

The controller design parameters are selected so that they obey the rules given by (44),(45),(46)
and (47). Obviously infinite number of parameters set is possible. Three groups of parameters
are listed in Tablel, 2 and 3 and named as case 1, case 2 and case 3 respectively. These
parameters are selected intuitively and then checked whether they obey the above rules.

Step inputs are applied for both reference signals. The outputs q(?), « (¢) are shown in Fig 2.a),
3.a), 4.a). The aircraft control inputs are shown in Fig 2.b), 3.b), 4.b). The error responses ¢.(?),
a,(t) are shown in Fig 2.c), 3.¢), 4.c).The switching functions plot are shown in Fig 2.d), 3.d),
4.d). Fig.2, Fig.3, Fig.4 represent case 1, case 2, case 3 respectively. As it is seen from the
figures error responses are in an acceptable range for the three cases. Fig.2, Fig.3 and Fig.4
reveal that the switching variable s(?) decreases very rapidly and reaches the sliding surface in a
few seconds, which is in agreement with the reaching law for our multivariable case, given by
(11k). Chattering exists for case 1 and case 2 and the system is free of chattering for case 3.
Note that, we form the sliding mode controllers such that by varying the coefficient of
“importance” of each term uey(?), Umin-max(?) and uy;(t), we may reduce discontinuous control
activity. So, it is possible to guarantee sliding motion with chattering and also free of chatting.
Decreasing the value of design parameters r;, 7, and J;, & we may completely eliminate
chattering effect. The disadvantages of this particular type of control law become apparent
during the physical implementation. It is imperative that the switching of the control takes place
at a very high frequency but the real plant may not tolerate such behavior at the input. In same
cases control chattering is absolutely impractical for controlling deflections of aerodynamic
surfaces and thrust vector. However, a small chattering effect with low frequency or with high
frequency but different from natural frequencies of the plant and actuators

wy, (w ;) may be in same cases useful. But all parts of space vehicle vibrate,

switch © W,

natura
and small chattering with minimum energy dissipations keeps the plant always in active
position “tenacious of life”. This may increase the system reliability in a sense. This is very
important for space control systems. On the other hand actuators (hydraulic and pneumatic) in
aircraft control systems are in general, has first or second order dynamics. This will weaken the
high frequency components which exist due the switching effects. Thus, the average of the
control signal is converted to nearly a continuous from while it passes through the actuators.

It is well known that pneumatic and hydraulic actuators can coop with the chattering
phenomena. For instance set of pneumatic sliding mode controllers can work well with the real
dynamic plants with diaphragm actuators [47], [S5]. An electro hydraulic velocity servo control
system using the integral variable structure controller approach was successfully illustrated in
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[56]. Simulation results show that VSC can achieve accurate servo tracking and is fairly robust

to plant parameter variations and external load disturbances. A second order sliding mode

Table 1. Case 1 design parameters Table 2. Case 2 design parameters
0.1 0 40 40 0.1 0 30 30
Q = o= Q = o=
0 0.1 40 40 0 0.1 130 30
0.1 -20 -20 0.32 [—-15 -15
0.1 -20 -20 0.32 —-15 15
0.1 0 -0.22 0.1 0 -0.22
0 0.1 -0.07 0 0.1 -0.07
(1.96 9.74 ] 0.1 (1.96 9.74 ] 0.1
10.54 2.78) 0.1 10.54 2.78) 0.1
pe [0.33 1.05] x=0.081 pe [0.33 1.05] x=0.081
105 536 g, =1 105 536 g, =1
r=l =2 h'=0.97 r=15 =25 h'=0.97

practical implementations in aircraft control was successfully implemented in [57]. One
must recall that existence of chattering in control systems guarantees the robustness.
Therefore, one usually does not prefer to completely remove the chattering.
Compromises have to be made between the robustness and chattering effects.

A general way to avoid chattering effects is a smooth approximation of the signum function [9],
[52] i.e., by replacing sign(s(?)) by sat(s(t)) we have

sat{%} %S(O if s < ¢

sign(s(0) if [s()] > ¢

(2.2.41)

where ¢ is small boundary layer thickness.

So by continuous approximation of discontinuous control law it is possible to form a quasi-
sliding motion with free of chattering. Sliding and stability properties of a continuous
implementation of variable structure control in which signum nonlinearity is approximated by
saturation nonlinearity is studied in [58]. Note that this result which was derived for linear

81



systems are also valid for our case. Another reduction of chatting in variable structure control
systems has analyzed in [59].

The main feature of this approach consists of an increase in the order of the sliding regime and
of the introduction of an approximate control which asymptotically converges to the ideal
sliding mode.

Table 3. Case 3 design parameters

0.1 0 (30 30
Q: a:
0 0.1 130 30

0.51 [—15 =15
0 = p=
0.51 -15 -15
(0.1 0 [—0.61
G = 5 =
0 0.1 |-0.75
[1.96 9.74] 0.1
C = F =
10.54 2.78] 0.1
P (033 1.05]  x=0.012
1105 536] g, =1
1n=0.5 =1 h'=0.97

In practical realizations, the chattering problem must be treated by examining the dynamic
characteristics and physical situation of each plant. The effect of varying design parameters on
closed loop system performance was not studied analytically in this work. Optimization of
design parameters will be examined in a separate work. Preliminary results of this study were
presented in [60]-[62].

2.2.8 Conclusions

A robust flight control system was investigated via variable structure and Lyapunov function
for simplified F-18 model. Two types of feedback controllers: MMC and VSC for MIMO
systems with matching plants uncertainties, and input nonlinearity and external disturbances
were considered. For both cases the existence conditions of a stable sliding mode and the robust
asymptotic stability in large of uncertain MIMO systems by MMC and VSC were investigated.
For the derivation of the control law, a suitable sliding surface was chosen such that the zero
dynamic of the closed-loop system are asymptotically stable in the sliding regime. These results
were applied to design of a longitudinal flight variable structure controller for the F-18 aircraft
model. Simulation results were presented to show the effectiveness of the design methods. The
values of design parameters greatly affect the existence of chattering. Optimization of these
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parameters will be studied in another work. This includes classical optimization techniques and
optimization via fuzzy control algorithms.
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Figure 2.1 Block Diagram of the aircraft VSC system
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2.3 Design of output integral sliding mode controllers for guided missile system
with unmatched parameter perturbations

In this paragraph, the guided missile system is considered as SISO plant with parameter
perturbations. The structure of the missile system examined in this work is not suitable for the
use of classical linear controllers. On the other hand the missile system should possess good
performances, such as zero steady state error, less settling time etc. Standard VSC control laws
fail to control the steady state error due to the structure of the system matrices. For this reason
we have proposed two new robust output integral sliding mode controllers and design
procedures. An integrator is included in the sliding function, which results the reduction and
removal of the output error. The total control consists of two parts: 1) equivalent control part
which compensates the nominal regime of the missile system and 2) VSC part which
compensates the parameter perturbations (changes in Mach number, altitude and mass of the
vehicle etc) of missile system. We have derived a new constructive sliding and stability
conditions for both cases by using Lypunov's direct method. Computer simulations indicate that
this approach yields a satisfactory control performance.

2.3.1 Introduction

In recent years the sliding mode control has been successfully applied to the missile control
systems. In (Brierley and Longchamp, 1990)[63] a sliding mode control law has been derived
for a nonlinear system which corresponds to an air to air missile-target interception process.
The performance of the feedback controller was evaluated and shown to be robust to certain
parameter variations. The advantages and disadvantages of chattering phenomenon which
appears in missile control systems have been analyzed. In (Kim and Song, 1998)[64] an
adaptive nonlinear control design technique was applied to the pitch acceleration controller for
an aerodynamically controlled missile model. A nonlinear model with unknown parameters and
uncertainties was used for missile motion. In (George et. al, 1998) [65] a variable structure
controller was designed for the pitch plane dynamics of a flight vehicle. A discontinuous
control law was synthesized by applying Lyapunov function to ensure that a sliding mode exists
on the switching surface. However, this leads to the chattering phenomenon. The conventional
approach to eliminate chattering was to use a continuous control signal instead of the ideal
control based on the signum function. Here, a signum function was approximated by the
hyperbolic tangent function. This implementation requires the computation of the equivalent
feedback gain.

In this paragraph, the guided missile system is considered as SISO plant with parameter
perturbations. This model has been taken from (Hartman and Grebing, 1990) [66]. The missile
and aircraft control system is investigated according to the sliding mode control theory (Utkin,
1992; Young, 1993; Garafalo and Galielmo, 1996; Edwards and Spurgeon, 1998; Mita et al.,
1996; Gessing, 1998; Jafarov and Tasaltin, 1998; Jafarov and Tasaltin, 1999; Jafarov and
Tasaltin, 2000; Levant et al., 1999) [67]-[76]. Various missile systems are controlled by using
the classical linear controllers (Blakelock, 1991) [77]. The structure of the missile system
examined in this work is not suitable for the use of classical linear controllers due to wide range
of parameter variations. On the other hand the missile system should possess good
performances, such as zero steady state error, less settling time etc. Standard VSC control laws
fail to control the steady state error due to the structure of the system matrices. For this reason
we have proposed two new robust output integral sliding mode controller design procedures.
An integrator is included in the sliding function, which results the reduction and removal of the
output error. The total control consists of two parts: 1) equivalent control part which
compensates the nominal regime of the missile system and 2) VSC part which compensates the
parameter perturbations (changes in Mach number, altitude and mass of the vehicle etc) of
missile system. We have derived a new constructive sliding and stability conditions for both
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cases by using Lyapunov's direct method. Computer simulations indicate that this approach
yields a satisfactory control performance.

This paragraph is organized as follows: Description of missile dynamic is given in section 2.
The output sliding mode control law is derived in section 3. A simplified and a complete design
procedure are investigated in that section. Section 4 summarizes the simulation results of the
missile control system. Section 5 contains the major conclusions arrived at in the paper.

2.3.2 Description of missile dynamics

It is desired to control the vertical acceleration of a rigid guided missile over different operating
conditions. The missile is open loop stable, but has insufficient damping and has non-minimum
phase transfer function. The guided missile model described in this section is based upon a
modified version that is given in (Hartman and Grebing, 1990) [66]. The behavior of rigid body
guided missile may be described as follows:

x() = (A+ Ad)x(¢) + bu(?) 23.1)
y(0)=c" (O)x(1) (2.3.2)
e(t)=y() =y, (2.3.3)

where x(t) € R’, x(t) is the state variable, u(?) is the scalar control input, y() is the controlled
scalar output variable, e(?) is the scalar output error:

Figure 2.5 Notation used to describe missile

u= elevator command (radians)
y= vertical acceleration (m/sec”) (a, inFig.2.5)

X, = pitch rate (radians/sec), (Ag in Fig.2.5)
x, = angle of attack (radians), (A« in Fig.2.5)
x,= elevator deflection angle (radians), (A7 in Fig.2.5)

e= error between output and desired set point v,

A and AA are nominal system matrix and parameter variation matrix, respectively. It is desired
to find a controller to control the vertical acceleration y subject to the following conditions:
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1) For a set point change iny,  , the % overshoot iny <10% , and the steady-state error
<5%

2) The elevator deflection angle x, should be limited to | x; |< 20°. The elevator deflection
angle rate X, should be limited t0|5c3| < 600" /sec.

3) The above control specifications have to be satisfied for ten given operating conditions
(which depend on Mach number, altitude and mass of the vehicle). In this vehicle, the pitch
rate X, can be measured and used for control purpose.

The data for this problem is given as follows:

B a, ap, b, 0
A=A+A4=|1 a,, b,|,b=|0 |,c" =[¢, ¢, d] (2.3.4)
0 0 -190 190

where a,,,a,,,a,,, b,,b,,¢,,,¢,,,d, are given in Table 1 for ten different operating conditions.
The nominal values of A,b,c can easily be determined from the table.

2.3.3 Output integral sliding mode controllers

By employing SMC theory, we will treat a robust sliding mode controller for a missile system
with uncertain parameters. For robust stabilization of missile systems, we propose two new
output integral sliding mode controllers, to increase the system performance, namely, to remove
the steady state error, and to reduce the settling time. In other words to provide high precision
of missile control system we introduce an integrator into the sliding surface in the control law.
To solve this problem we need to make the following standard assumptions.

Assumption 3: A4 is bounded

B, =min|Ad(o)] < |Ad(0)] < max || Ad(o) |I= B (23.5)

where £ and [, are given constants.

Assumption 4: Rate of output parameter variations is very small or
c(t)=0, c(@)=0 (2.3.6)

2.3.3.1 Simplified Design

We select the following combining sliding mode controller with dynamic equivalent controller
u(t) = u,, (1) — uys-(2)

or u(t) =u,, (1) =k || x(2) | sign(s(#)) (2.3.7)
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where is the equivalent control for the nominal system, k is the scalar feedback gain that is to

be selected by the designer, || x(¢)||=vx"x is the Euclidean norm of the vector x(z) .

Introducing the integral error which characterizes the mismatch between the measured output
variable and its set point for nominal system

e =e=[[c" (O)x(t) — ,, Jat
e,=¢ = ' (t)x(r) - Yre

e, =é, =c’ (t)Ax(t) +c" ()bu(t) (2.3.8)

and we define a switching variable as

s(t)=ae +aye, +ae, a,=1 (2.3.9)

where a,,a, are to be selected so that the following polynomial is stable (Mita et al., 1996)
[71]

g’ +a,q+a,=0 (2.3.10)

According to the equivalent control method (Utkin, 1992) [67], we can get u, (¢) for the

nominal system by differentiating s(#) with respect to time

$(1) = (@c” +a,c” A+ A)x(t) +(arc b + T ABYu(t) + b u(t) - ay,, =0 (23.11)

Hence, we have the dynamic equivalent control in the form of the first order system with right
side

tteq (1) =~(c"b) (a,c"b+ " Ab)u,, (1)

(2.3.12a)
—(c"b) N (a,c"b+a,c" A+c" A*)x(t)+(c"h) g, Vref
or in form of Laplace transform
U,(s)= (a,c"b+c" Ab+c"bs) N (a,c” +a,c" A+ A7) X ()
(2.3.12.b)

+(ayc"b+c" Ab+c"bs)™ Y ,yop

Therefore, we construct the integral output sliding mode control as in (7), (9), (12) to ensure the
high performance control. After selecting the sliding mode control with integral switching
surface s(z)=0 the next step is to choose the design parameter k such that the sufficient
condition for the existence of a sliding mode

88



s(t)s(t)<0 (2.3.13)
is satisfied and the closed loop sliding system is stable.
Lemma 2: Suppose that Assumptions 3, 4 are hold, then the stable sliding motion on switching

surface s(2)=0 (9) is always generated in missile system (1), (2), (3) driven by autopilot-
controller (7), (9), (12), if the condition

i @+ 20+ B)B, 23.14)
7B,

1s satisfied

Proof: Define a positive definite Lyapunov function
1,
40) =58 ) (2.3.15)

and its time derivative along the trajectory of the control system with unmatched uncertainties

(1),(2), (3), (7), (9), (12). Then V(t) can calculated as follows

V()= 5)s(t) = O’ +a,c" A+ L)x(O)~ay,,

+(aycT b+ Abyuy, (1) + " biteq (1)]
+s()[(a, " Ad+c" AAA+c" A4 A+ T AAP)x (1) + " AAd bu,, (1)

=s()[(a,c"AAd+c" A AA+c" A A+c" AA*)x(t)— T AAbk || x(2) || sign(s(7))]

s@lay llcll p+Icllap+]cllap+lcl B2 x@ I =lcll Bkl x®) ||| s@)]

=l c||[Bla, +2a+ B)—ky]|s(t) ||| x(t) < 0 (23.16)
where = 4|y =l|b];

Inequality (16) is written with the aid of s(¢)sign(s(z)) =| s(¢)|. In view of (16), if the
condition (13) is satisfied then (16) reduces to s(¢)s(¢)<0 for s(¢)#0 and x(¢)#0

Therefore, we conclude that the robust stable sliding motion is always generated in the missile
system. Moreover, it follows from (9) that s(2)=0 causes e(t) — 0 and e — 0 since (10) is

stable.

2.3.3.2 Complete Design
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In the previous section we have designed the reduced integral sliding mode controller for
missile system with unmatched perturbations. The method is sufficient to obtain the desirable
control performance but it is not straightforward in the design procedure sense. Therefore,
below we propose another type of sliding mode controller and design procedure. A design
method has been considered for sliding mode control in the space of output error variable and
its derivatives for the time invariant system in [67]. Here, we generalize this design method for
the system with model uncertainties. First, we describe the original system (1), (2), (3) in terms
of output error variable and its derivatives. Introducing

e, =)= [l (x() -y, Jit

GO =e()=c"x() -y,

é,(t) = e, (t) = c" Ax(t) + " bu(t) (2.3.17)
e, (t) = " APx(t) + " Abu(t) + ¢ bu

Switching surface is defined in the form of (9). The transformed system (17) includes the time
derivative of control input, hence we introduce the following dynamic system [67]

u(t) =u,(t)
u, () = u, (1) = Au, (t) + v(?) (2.3.18)

where v is the discontinuous function of output error, and just introduced state variables u,,u,

are assumed to be measurable. The coefficient A may be arbitrarily chosen so as to facilitate the
realization. Again, we determine the equivalent control for nominal system (17) froms =0:
calculating § from (9) and substituting (17), we have

$(t) = a,c x(t) - Y, + a,c” Ax(t) + a,c bu, (1) + " A2x(t) +c" Auy (1)

(2.3.19)
+c"bAu () +c"bv(t) =0
Hence
v(t) =v,, (1) = ~(c"b) [(a,c" +a,c" A+ A2)x(0)-a,y,,
(2.3.20)
+(ay,c"b+c" Ab+cTbAYul(1)]
Thus, we propose the following new output integral sliding mode controller
u, () = u(?)
uy (1) = 1, (1) = A, (£) +v,,, (1) — k|[x(0)|[sign(s(2)) — plu, (1)|sign(s(?)) (2.3.21)

90



where k and p are design parameters which are to be selected for the transformed system
with unmatched plant uncertainties which is described in the following form

M) =e,(t)=c"x(O)-y,,

é,(t) =c" Ax(t) + c" Adx(t) + ¢ bu, (t) (2.3.22)
é,(t) = (c"A* + " AN + " AAA + cTAA? ) x(t) + (c" Ab + " Adb)u, (t) + " bu, (1)

Now, we will analyze the sliding condition from which the design parameters £ and p will be
determined.

Lemma 3: Suppose that Assumptions 3 and 4 are met. Then the stable sliding motion is always
generated on the switching surface s(¢) = 0 (9) defined for the system (22) which is driven by

controller (21), if the following conditions are satisfied:

j > Plax 20+ f) (2.3.23)
y

s ey (2.3.24)
min[c’b]

Proof: Calculating s(¢) s(¢) <0 on the system (9), (22), (21), (20)

S5t =sO(ac” +a,c” A+ (1) =0y, +(a,c b+cT Ab+cTbAyu, (1)
+T B, (O] +5()[(ayc Ad+c" A A+TAA A+ T AL x(e)+c Ad b (1)
— Tk |x(t)|sign(s(t)) =" bplu, (1) sign(s(©))
< @l B+ ||+ e B+ || A s x| -min(e Bk s+l o7 2:325)
—min(c")p) i, (0)||s )]
= [||c|| Bla,+2a+p) —nnn(ch)k]\s(z)mx(t)H

+[lel (By —min(cb)p) |, (1) | (1) [|< O

+ |l eI (By —min(c"b)p) |uy (1) | 1| s(£)|I< O

if the conditions (23)-(24) are satisfied.
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Therefore, the stable robust sliding motion (22) is always generated in the system with
unmatched uncertainties. Note that, both sliding conditions (13) and (23), (24) are in
accordance which is the another verification of design results. Thus, we have successfully
design two new types of robust output integral sliding controllers for the stabilization of the
vertical acceleration of the missile system with parameter perturbations. The stable sliding
motion is always generated in the missile system and this motion has not been affected by
parameter perturbations. So, desired closed loop missile system with high control performance
is achieved.

2.3.4 Simulation Results

The above designed missile control systems has been simulated using MATLAB and special
numerical routines. The block diagram of missile control system is shown in Fig.2.6.
Simulation results are presented in Fig.2.7 through Fig.2.11. As can be seen from the figures,
the structure of the applied control law in each case can control the vertical acceleration of the
missile system in principle. Namely, the output can track the reference step input, i.e. the output
error goes to zero in all cases. The switching function also goes to zero rapidly, which is very
important for successful operation of VSC. The settling time is determined by two factors,
namely, the hitting time and the sliding time. The less hitting time means the reduction of
settling time. It should be mentioned that the performance criterions, which is outlined in
Section 2 are fulfilled in each cases, i.e. the percent overshoot is around 10 percent, the output
steady state error is zero, elevator deflection angle, and elevator deflection rates are in the
required bounds. The most important is the fact that the controlled system keeps its robustness
when the missile parameter varies in a wide range. Notice that the model contains 10 operating
conditions which depend on Mach number, altitude, and mass of the vehicle, etc. The controller
can successfully control the missile system for all 10 flight conditions.

It is also noted that the missile system has a non-minimum phase transfer function, thus it is
difficult to find a control strategy which satisfies both steady state and transient response
criteria. Furthermore, the standard VSC i.e. without integral control fail to control due to
structure of A and b matrices.

The two new control strategies are applied to the missile system. The results are quite
satisfactory. The missile system has undamped characteristic and vibrates. Due to the chattering
phenomena VSC is in general not suitable to this type of systems. However, if chattering
frequency is kept far away from the missile system natural frequencies, then we can use the
VSC in confidence. Note that, it is easy to reduce the chattering phenomena by varying the
controller parameters. However, this affects the closed loop system robustness. Thus, there is a
controversy between the chattering vibration and system robustness. However, since the
elevator actuator (hydraulic or pneumatic) has a second order low pass filter characteristics, the
high frequency component produced by the VSC is weakened, and can be applied to the control
elements of missile system.

The figures are ordered as follows:

Fig.2.7 represents the results when VSC is absent (k=0), The controller is operated as an
equivalent control, i.e. the control is a continuous control law, although it is derived from the
condition s(¢#) =0 Note that the equivalent controller has a first order dynamic and the

equivalent control law u, () is obtained by solving a first order differential equation. As can

be seen from the figure the equivalent control law brings the system close to the desired state.
The output error goes to zero but other performances such as the settling time are not in stated
bounds. Although, it is possible to get better performance by varying the equivalent control
design parameters, it is not possible to fulfill the desired criteria. The VSC is added to the
system to fulfill these criteria.
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Fig.2.7.g and 2.7.h denotes the phase plane of error and switching coordinates. Fig. 2.8, 2.9,
2.10, 2.11 denotes the graphs where both the VSC and the equivalent control present. Random
disturbances are given to the system. The values of design parameters corresponding to figures
Fig. 2.8, Fig. 2.9, Fig. 2.10, Fig. 2.11 are tabulated in Table.4 where k is calculated considering
the condition (2.3.14). Detailed analysis of output error in Fig. 2.8, 2.9, 2.10, 2.11 shows that
the output steady state error goes to zero very rapidly and, settling time and other control
performance indices are in required bounds. Random disturbances are given in each integration
step corresponding to changes in flight conditions. The amplitude of disturbances is adjusted in
such a way that the simulation covers almost the whole

Table 4
a, a, a, |k |@ B |7
22326 [654 |1 |0 545 |15 190
1851.3 | 357 1 9.7 |545 |27.8]190
2019.5 | 271 1 |8.1 |545 |33.2]190
1926.6 |187.8 |1 |11.2|545 |54 |190
1981.6 |154.5 |1 |79 |545 |82 |190

envelope of the given flight conditions. In Fig.2.11 elements of the system matrix A are
perturbed in such a way that the envelope includes all of 10 cases of flight conditions.
Maximum change of value of an element in one integration step was 0.5 percent of the
elements mean value, and maximum variance from the mean is determined by Table.5. Note
that, Fig.2.11 represents a kind of "the worst case", and even in this worst case, system can still
be assumed as robust. Perturbation of system parameters does not deteriorate the system
performance.

As can be seen from the Fig.2.11 when system parameters change rapidly chattering
phenomenon exhibits clearly. Two points should be mentioned here. First, this type of system
cannot be controlled by the use of equivalent control only. Second, the vibration caused by the
VSC is damped by the system dynamic. Phase plane of switching function s(?) and its

derivative $(¢)and phase space of e,(?),e,(?),e,(t), are shown in g) and h) parts of Fig.2.7

through 2.11. Phase plane graphs shows that the state trajectories of the missile control system
have a stable focus (or stable node, or stable saddle point). Therefore any initial motion has
been attracted to the stable focus (or stable node) by the control action. Thus the phase plane
shows that the missile system with integral sliding mode control is asymptotically stable.

As can be seen from the phase space the states rapidly reach to the switching hyperplane, and
from this hitting time, the sliding motion is generated on this hyperplane. The sliding motion is
continuing towards origin, exhibiting asymptotic stability. Note that, the sliding phase plane
and the output error phase space of missile system confirm our design procedure. Thus by the
use of proposed sliding mode controllers the system keeps its robustness while without loosing
its main performances.

The above results show that the proposed sliding mode control strategies can be used to control
a missile system which is difficult to control by classical control strategies (Jafarov and
Tasaltin, 2001) [78].

2.3.5 Conclusion

In this paragraph, the guided missile system is considered as SISO plant with parameter
perturbations. The structure of the missile system is not suitable for the use of classical linear
controllers. On the other hand the missile system should possess good performances, such as
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zero steady state error, less settling time etc. Standard VSC control laws fail to control the
steady state error due to the structure of system matrices. For this reason we have proposed two
new robust output integral sliding mode controllers and design procedures.

An integrator is included in the sliding function s(t) , which results the reduction and removal
of the output error. The total control consists of two parts: 1) equivalent control part which
compensates the nominal regime of the missile system and 2) VSC part which compensates the
parameter perturbations (changes in Mach number, altitude and mass of the vehicle etc) of
missile system. In the first design method, the equivalent control law is obtained by solving a
first order differential equation, i.e. equivalent control is a dynamic controller type. For this
case the sliding condition with respect to the switching variable are investigated. The
asymptotic stability of the missile system with parameter perturbations in large with respect to
the state coordinates are derived by using the Lypunov's direct method. The second case
considers the complete design of the missile control system. New state (control) variables are
included into the system, i.e. we augmented the system in such a way that the augmented
system has better performance and easier design procedure than those of the first method.

We have also derived a new constructive sliding and stability conditions for this case by using
Lypunov's direct method. Note that, the results of both cases are coincide and in accordance
with each other.

Various simulation results are added to show that the proposed sliding mode controllers provide
good closed loop performances of output steady state error, settling time (hitting time and
sliding time), overshoot etc. The variation of system parameters does not affect the controlled
system performances considerably, i.e. the control system is robust against parameter
variations.

Simulation results of the proposed design procedure are verification of our theoretical
foundations. As a result, we can clearly state that the VSC can be applied for missile control
systems.

Table 5

Altit. Om Om Om Om Om 12km |12km |12km |12km |12km
Mach Num |0.8 0.8 1.6 1.6 2.5 2.0 2.0 2.0 3.0 4.0

an -0.32710.391 |-0.688 [-0.738 |-0.886 |-1.363 | -0.333 {-0.337 | -0.369 | -0.402
ap -63.94 1-130.3 |-619.3 | -651.6 | -1068 [-92.82|-163.2 |-224 |-253.7|-277.2
a -1.0 -1.42 |-2.27 |-2.75 |-3.38 |-4.68 [-0.666|-0.663|-0.8 -0.884
b, -155.9(-186.5|-552.9 |-604.2 |-1004 |-128.5|-153.3 -228.7|-249.9 |-419.3
b, -0.2371-0.337-0.429 [ -0.532 | -0.582 [ -0.087 | -0.124 | -0.112 | -0.135 | -0.166
Ci1 0.326 [0.35 |0.65 [0.66 |0.79 |[1.36 |0.298 [0.319 [0.33 [0.36

Ci2 -208.5-272.41-651.1 |-913.6|-1926 |-184.3|-247.8 |-375.7|-500.6 |-796.2
d; 90.93 |75.06 |283.4 [250.5 |402.9 [76.43 |63.77 |117.49|103.8 |[178.6
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CHAPTER 3

Variable Structure Control of Robot Manipulators with
Parameter Perturbations

In this chapter, robust relay, PD, PID-sliding mode controllers for position and tracking control
of robot manipulators with non-linear dynamics are systematically designed.

3.1 Robust relay and PD-sliding mode controllers design methods for robot
position systems with parameter perturbations

This paragraph introduces three new position variable structure controllers design methods for
robot position systems with parameter perturbations. The first method considers a relay type
discontinuous sliding mode controller which employs well-known equivalent control scheme.
The second approach uses an equivalent control-like method. However, both approaches
require exact knowledge of the robot dynamics. Therefore, a third variable structure PD-control
scheme is proposed with the assumption of having inexact information about the robot arm
system. The proposed controller uses only some robot bound parameters and measurable joint
variables. The sufficient conditions are derived for the existence of a sliding mode in the robot
arm system. The techniques of matrix norm inequalities are often addressed for robustness
analysis of the controllers. In addition, the stability conditions are also investigated in a global
sense. Effective parameter-independent conditions are developed by using a full quadratic form
of Lyapunov function. Simulation results have been presented indicating that the control
performance is satisfactory.

3.1.1 Introduction

One of the advanced control approaches is the variable structure control which is introduced
systematically to the control theory [1-2] and process control [3] for the first time. Variable
structure systems are a class of systems with discontinuous feedback. They can offer very
robust controllers which are insensitive to parameter uncertainties and external disturbances. A
control law that ensures the stability of the intersection of the discontinuity surfaces to reduce
the complexity of the design is developed in [4]. For a set-point regulation control of robot
manipulators, a new control algorithm which successfully utilizes the advantage of symmetric
positive definiteness of the inertia matrix is introduced in [5]. A model-based adaptive variable
structure control scheme for underactuated robots can be seen in [6]. A survey paper [7]
presents an overview of six different robust control schemes including current robot state
coordinates for robot manipulators. Discontinuous min-max control term combined with the
linear control term is given for robot control systems. However, sliding and stability conditions
are not considered in this paper. Robust relay discontinuous sliding mode controller with the
chattering effect is considered in [8]. Sliding and global stability conditions are derived for
robot system.
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In this paragraph three new sliding-mode controllers are considered for the set-point
stabilization problem of robot manipulators with parameter perturbations. The first two
approaches depend upon the availability of exact robot dynamics but the third control scheme
does not do so. The sufficient conditions are derived for the existence of a sliding-mode in the
robot manipulator system. For a global asymptotic stabilization of the multivariable system,
extended stability conditions are investigated. The advantage of the symmetric positive definite
inertia matrix is often taken into account. A reduced design is also given. Finally, the control
algorithms are tested through simulations with a two-link direct drive robot arm. The simulation
results reveal that the control performance is satisfactory. The application of a saturation
function in the control law instead of a pure signum function is shown to result in a smooth
transient performance.

3.1.2 Relay controller with equivalent control term: design with full dynamics
knowledge

In this section, it is assumed that the information related to the dynamics of the robot
manipulator is exactly known. The conventional equivalent control method is considered in the
controller design. The goal of the proposed scheme is to achieve a set-point regulation. The
dynamics of an n-link manipulator is given by the following equations:

b=0, 0o=M©O) |[-BO.60)0-1©6)+u)] G.1.1)

where 6 is an nx1 angular position vector, @ is an nx1 angular velocity vector, M (6) is an
nxn symmetric positive definite inertia matrix, B(#,6) is an nxn Coriolis and centrifugal

matrix, f(0) is an nx1 joint friction vector and u(r) is an nx1 control input vector. Let
6, (constant) and w,(=0) denote the desired trajectory. Then the error dynamics is written as
follows:

G-, 5=M©®) |-BO.HE- 1) +u®) (3.1.2)

where & and & represent the error trajectory, i.e.  =6—60,, @=w-aw,. The sliding mode
relay control law with full exact dynamics knowledge is chosen as:

u(t) = u,, (1)~ ksign(s(z)) (3.1.3)

where u,, (t) represents the equivalent control input, & is a positive constant scalar position

gain parameter to be selected, (j| is the Euclidian norm, sign(s(r)) = [sign(s, (1))....,sign(s, (1))]"

as the vector of signum function and s(z) is a conventional sliding surface given as:
s()=CO + & (3.1.4)

where C is a nonnegative constant design matrix to be selected. The standard equivalent
control law is given by:

§(t) = 0= u(t) = u,, ()= |- M(O)C + BO,0) 5+ £(6) (3.1.5)
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Substituting the control law (3) with (5) into (2) yields the following error system dynamics:

0=, &=-Cis—M@O) ksign(s(t)) (3.1.6)

The control problem can be formulated as choosing & so that a multivariable sliding mode
exists and the sliding robot system is guaranteed to be globally asymptotically stable.

3.1.2.1 Sliding conditions

The following lemma presents the sufficient condition for the existence of a sliding mode for
the position control.
Lemma 1: The stable and 7 - stable sliding mode on s(z)=0 (4) always exists in the error

system (6) driven by the controller (3), if the following condition holds:

k> %mgax”M(H)”F (3.1.7)

where 7 is a positive constant scalar and |(-)| » =ytrace ()" ()) is the Frobenius norm and » is

degree of freedom of robot.
Proof: A Lyapunov function candidate is introduced as:

v %[s(l)Tsign(s(t))]z (3.1.8)
Taking the time derivative of (8) along the state trajectory of system (4), and (6) yields:

V =—s(t)" sign(s(2))[sign(s ()] M (0)' ksign(s(r)) (3.1.9)

It follows from (9) that ¥ is already guaranteed to be negative definite. However, it might be
desirable to use a 5 — reaching condition [9]. For this, (9) can be converted into an inequality

as:
n

v <—k|s[ [sign(s))] M(6) sign(s(1))< i)

s’
(3.1.10)

<d—" s <-nlso)|
mglx”M(H)”F ”S( )” 77"3( )"

Therefore, if condition (7) is fulfilled then the sliding inequality (10) reduces to ¥ <0 for all
s(¢t)# 0. This concludes that the sliding motion is always generated on the switching surface

s()=0.

3.1.2.2 Global Stability conditions

The following theorem introduces some additional conditions to globally asymptotically
stabilize the robot regulation system.
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Theorem 1: Suppose that the condition of Lemma 1 holds, then the error system (6) driven by
the relay controller (3) is globally asymptotically stable if the following conditions hold:

R(6,0)+0(6,0) >0
M (0 max|P(0,0)| * (3.1.11)
N mgX” ( )”F . 0.6 “ . HF ' +l,u0 max“M(H)H
n %nz[R(a, 0)+0(0,0)| 27" 0 F

where

P(0,0) = %[AM(H)A FWM@OW - 1, CM(O)C+ %[ﬂOCM(Q) — uM(O)C) 0(0.6)
= P(0,0)C + CP(0,6)

R(6,6) = %[yOCM(H)C — AN ()4 - WN (O ]
and

C="0(44dL,), tty=w>+d>, W=wl,, D=d,l,, det(4)#0, det{dyl, —w, A" )#0

Ho

n?

with scalars w; and d,.
Proof: A positive definite full quadratic form of Lyapunov function candidate can be chosen as

~ N 51" T o 0 ~
v, ,J))z%[s(t)rsign(s(l‘))] +;[Z} { V;T qu {Mo ©) M(,,e)}[ V;T V;}Lﬂ (3.1.12)

n

where 4, W and D are constant symmetric gain matrices which are selected as described in
the statement of Theorem 1. Taking the time derivative of V(z, 0,d) along the state trajectory
of system (4) and (6) gives:

V(0,é,t) = %éT [AM(@)A+ WM(&)WT}méT [AM(@)A +WM@OWT + ﬂocM(e)]as
+a" {uOCMW)QuOM(e)}@wO (07T +a" | M©)|-Co-M©) ksign(se}  G113)

—s(t)Tsign(s(t))[sign(s(t))]TM(G)’lksign(s(t))
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The last two summing terms of (13) can be separately rearranged as follows:

L=—u, [éTCM(e)Cm @TM(a)C@} — i Jes(1) sign(s(t))
—s(t) sign(s(1)) [sign(s(t))f M (0) ' ksign(s(t))

<—u, [éTCM(e)cm asTM(e)ch} —k ‘ s
F

_on
g 0
<—u, {éTCKCé +07[2CK +CM (0)Cao+a [KI, +M(0)C}a3}

n

where K =k——F———— . The right-hand part of L is substituted into (13) appropriately to
max|M ()],
get
V(t,ﬁ,c?;)s{q H{‘q (3.1.14)
1] 1]

where H,,' =H,,=H ,H,,' =H, =CHC+R(0,0),H,, = HC — P(0,0) and
H = HoKT, —% yOM (6) . Applying Schur’s complement to H yields:

H>0&H,, >0, H,-H, Hy, 'H,>0 (3.1.15)

Rewriting (15) explicitly gives: H >0, R(8,0)+0Q(0,0)— P(0,0)" H'P(0,0)>0. Then (15)
can be rearranged as follows:

R(6,0)+0(6,0)>0 = R(6,0)+0(6,0)— P(6,0)" H'P(6,0)
> {I‘rglia_n A[R(6.6)+ 0(6.6)]- max| (o, O 2@ }In >0
5 0,60
which implies to fulfill

I (H )> 1,K —% Lo %XHM(G)“F > %X“ P(o, 9)“;(%1 A[R0,6)+ 00, 6’0])1 (3.1.16)

Thus, in view of (16), if conditions given in (11) are satisfied then the inequality (14) reduces to

V(z,é,a)s{q H{€}<0 (3.1.17)

[0 w

Hence theorem 1 is proved.
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3.1.2.3 Reduced design

The design parameters can be chosen more systematically. The gain matrix 4 can be
selected as 4 =a,l, with a, #0. Then C=c¢,I, where ¢, = u, "' w,(a, +d,). Choosing «,,
wo and d,, such that a, +w,” =2u,c,” yields the following: P(6,6) =% Lot M (0),

0(0,0) = pyc,’M() and R(0,0) = —% 1,cy*M (0) . In order to guarantee

: . 1 : ) -1
R(0,0)+0(8,0) > 0, one needs to choose ¢, as ¢, > 5 max “M (9)”F (ngnﬂ,[M (6’)]) . Then

the control parameter & is chosen in accordance with

max M (9)], ¢” max [M (9)],* 1

+—max [ (9),

Ho
n

e, mip 4000) - ma it o),

It is clearly seen that the lower bound for & does not depend on a, ,w, and d, explicitly.
Choosing an appropriate ¢, seems to be sufficient to be able to select k. The question is

whether this situation guarantees existence of real solutions for the remaining gain parameters.
The following are the five constraints in the selection of these parameters:

D a,#0
(2) aydy—w,> 20, (3) ay* +w,” =2u,¢,°,
4) W02 +d02 =y, (5w, (ao +d0) = [4,C,
A
Assuming that u, and ¢, are set, these expressions can be easily verified if an ABC triangle
shown in Fig. 3.1.1 with m(BAC)=135°, m(4ADC)=90° |AB|=1/;¢0 , Ac|=c0,/2y0 , |4D|=w,,

A
|BD| =d, and |DC| =a, is carefully investigated with Euclid’s metric formulas: (1) Since 4BC
can be drawn, «, is a nonzero side length. (2) The square of the height of the hypotenuse is

A
equal to the product of the portions that the height intersects on the hypotenuse. 4BC is not a
right triangle, thus the formula does not work. (3, 4) Applying Pythagorean theorem in the right

A A

triangles ADC and ADB verifies them respectively. (5) The left-hand part gives twice the area
A A

of ABC . Using trigonometry to compute twice the area as 2s(4ABC) = 2% Lo Con 2110 sin(135°)

gives the right-hand part.

3.1.3 An alternate sliding mode controller design with equivalent control-like
method

Assuming that robot dynamics are exact, the sliding mode control law is proposed as follows:

u(t) = M(0)|C(6.6)@ — ksign(s(1))| (3.1.18)
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where & is a positive scalar gain to be selected and C(0,0) = M(0) ' B(0,0)—C with C being
the sliding surface slope matrix. The error dynamics (2) is rearranged to get

0= (3.1.19)
&= —M(H) '£(0)-M(©6) ksign(s(t))

Ignoring friction, the time derivative of (4) is obtained as s(¢) = Cd + & = —ksign(s(t)) implying

: . . 1 . .
s(t) > 0 asymptotically. Choosing a Lyapunov function of V' = Es(t)Ts(t) and taking the time

derivative yields ¥V =s(r)"s(t)=—ks(t)" sign(s(t)). Since s(r)"sign(s(¢)) = Z'Si(t)| is always
nonnegative, ¥ is ensured to remain always negative.

3.1.3.1 Sliding conditions

The following lemma summarizes the general sufficient conditions for the existence of a sliding
mode in the robot system.

Lemma 2: The stable and 7 — stable sliding mode on s()=0 (4) always exists in the system
(19) driven by the controller (18), if the following condition holds:

max /O]
W (3.1.20)
min (M ()
where 7 is a positive constant scalar.
Proof: A Lyapunov function candidate is introduced as:
[N
V:Em) s(0) (3.1.21)

Taking the time derivative of (21) along the state trajectory of system (4), and (19) and using
the 7 — reaching condition approach [9] yields:

V= s(0)" [M7(0)£(6.6) - ksign(s(1)]

< “M -1 (e)s(z)u max” £(0.0)]ks(0) sign(s(1)) (3.1.22)
max” 1, 9)“
mml M(H) " ¢ )”

Therefore, if condition (20) is satisfied then the sliding inequality (22) reduces to ' <0 for all
s(¢)# 0. This verifies that the sliding motion is always generated on the switching surface

s()=0.
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3.1.3.2 Global stability conditions
The results of a global asymptotic stability analysis are presented with a theorem as follows:

Theorem 2: Suppose that the condition of Lemma 2 holds, then the error system (19) driven by
the controller (20) is globally asymptotically stable if the following conditions hold:
0>0
P L e . (3.1.23)
> —_— —
(@) 1 min 2[M (9)]

where Pzé[A—dOCC], Q" =0=PC+CP and CT=C=diW with 4" =4>0,
0

w' =w, D=d,l,, with scalars w, and d,.

Proof: A positive definite Lyapunov function candidate in quadratic form can be chosen as

V(t,é,cb):;[g {V;T Vg}{ﬂ [s(z)Tslgn(s(r))] (3.1.24)

where 4, W and D are selected as described in the statement of Theorem 2. The time
derivative of V(¢,6,®) along the state trajectory of system (19), (4) gives:

V(1,0,8)=0"(4—d,CC)o+a" (W —d,C)a —dys(t) MO) ™ f(6)—dks(t)” sign(s(1))
(3.1.25)

— s sign(s (o) [ sign(sen)] M0y fi6) - ks (o) sign(s ()] [sign(s(e)] sign(s(0))

The last two summing terms of (25) are rearranged and (25) is rewritten in the form of an
inequality:

max” 19 “

V(1,0,8)<0" (4~dyCC)as+ &' (W —dyC ) —dy| k— ls()]| ~ &[}s )|’

1n/1(M(9) |
(3.1.26)
where H,,' =H,,=kCC, H, =kC—-P, H,,' =H,, =kl with

s el

k=n k— — = .
n mgmﬂ,(M(H))
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Applying Schur’s complement to H and following the similar steps from (15) to (17),
Theorem 2 is proved.

3.1.3.3 Reduced design

The gain matrix 4 can be selected as 4 = ayl, with g, #0. Then O =2¢,P with

1 . o .
P= E(a0 —¢,’dy)1, and the sliding and stability conditions reduce to

0] A, mpdrd]

> max " i ZMO)] 77, ©) 1 min [M0)]

3.1.4 Main results: PD-controller design without full dynamics knowledge

In this section, it is assumed that the controller to be designed has only inexact knowledge
about the dynamics of the robot. The controller knows only the lower and upper bound values
of the robot system parameters. These parameters involve very complicated nonlinearities and
they are sources of strong natural parameter perturbations. A robust control law can be
introduced as:

u(t) = —(K, +K, H§ H +K, ||5||)sign(s(t)) (3.1.27)

where K, is a positive constant scalar relay gain parameter, K, is a positive constant scalar

position gain parameter, K, is a positive constant scalar derivative gain parameter all to be
selected.

3.1.4.1 Sliding conditions

The sufficient conditions for the existence of a sliding mode in the robot system are given with
the following lemma:

Lemma 3: The stable and 7 - stable sliding mode on s(#)=0 (4) always exists in the error
system (2) driven by the PD-variable structure controller (27), if the following conditions hold:

K, > mgtx” f(é)”
K, 21d], K, ~maxp @) Jcl, + max|B0.0)] |, 6128

K, 2+ max @), Ic],
Proof: Let a positive definite Lyapunov function candidate be selected as

V= %S(Z)TM(H)s(t) (3.1.29)

112



Since EM (0)— B(6,0) is skew-symmetric, the time derivative of V' along the state trajectory
of (2), and (27) is:

vV =st)" [M(e)cm B(6,0)CO- £(6) —(K,, +K, ||é(z)|| +K, ||c?)(t)||)sign(s(t))} (3.1.30)
<[ K, —max| £(&)]+ (Kp ~max|8(0.0)] |C]. j”é(r)”
+( K, ~max|m (@) ], )l

If conditions in (28) are fulfilled, ¥ <0 is guaranteed. However, the multivariable 7 — reaching
condition can be derived. For this, K, and K, are chosen as in (28) and the Cauchy-Schwarz

triangle inequality is employed in (30) to get

v <l ~maxp @), [cl, Jsof <-nsf (3131)

Therefore, it follows from (31) that conditions in (28) ensure ¥ <0 for all s(¢) # 0 . This
concludes that s(#) - 0 asymptotically.

3.1.4.2 Global stability conditions

In order to make the robot position control system globally asymptotically stable, a theorem is
introduced as follows:

Theorem 3: Suppose that the conditions (28) of Lemma 3 hold, then the error system (2)
driven by the PD-sliding mode controller (4) and (27) is globally asymptotically stable if the
condition given in the first half of (11), K, >|C| . K, and

max|P(0.0)], | | |
K, > : : —+(C[, max|7(0)| . are fulfilled with P(0,0) and R(®,0) as:
#ymin 2| R(0.0)+0(6.0) | ;
PO, (9) = % [ATM(H)A + WM(Q)WT — ,U()CTM(Q)C]‘F%[IUOCTM(Q)C _ ATM(Q)A _ WM(@)WT ]C_l

—% 16,C" B(0.6).R(0,6)=P©,6) ' +(C" ) P0,6) +%(CT V{47 sy a+mar o o
—% wlc™m0)+ M(©o)C]

where C, y,, A, W and D are defined in the statement of Theorem 1.

Proof: The Lyapunov function (12) can be used. Then the time derivative of (12) along the
state trajectory of system (4), (27) can be computed as:
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V(t,0,d) = %5 AT N1 (0) A+ WL @O | + 87 [ATM(O) A+ WM@OW + 1, CT M (0) [

Lo yO[CTM(H) ; %M(@)}a +(07CT + 8" o[- BO.O)a - 1(0) (3.1.32)
(&, + K, o]+ Kd"cT)")sign(s(t))]

Denoting the last summing term as L, it can be rearranged as follows:

L =07 C" B(0,0) 1y BO,0)o—p1y5(0)" £(0)— oK, (t) sign(s(2)
1, (Kp o]+, ||a3||)s(t)Tsign(s(t)) <, [K, ~max|£(0)

+67CT B(0,0)@+ " B(6,0)d+ K, ||S(t)||2}

<, |07CTK,CO+07[2CTK, +CTB(0,0) |0+ 07 [ K,1,+ B, 9)}5)}

Substituting the right-hand part of L into (32) gives (15). The proof proceeds with following
the steps from (15) to (17).

3.1.4.3 Reduced design

The gain selections used in Section 2.3 can as well be used. This time ¢, has to be chosen such
. -1

that ¢, > n;aéx “B(H, 6’)”F (rrgn/"t[M (6’)]) and the control gain parameter should be selected in

accordance with

K, > [co mgx"M(ﬁ)”F +lmax”M(9)HF +lma_x“B(9, (9)“F T [co H{}nﬂ[M(e)] B HHI%XHB(Q’ 0)“F }1

2 6.6 2 00

+max [M (0],

3.1.5 Simulation example

A simple two-link direct drive robot manipulator is simulated to test the robust control systems
designed in Sections 2, 3, and 4. The manipulator is modeled as two rigid links with point
masses at the ends of the links (see Fig. 3.1.2). The model dynamic equations can be seen in
[10-12].

To illustrate the feasibility of the designed controller let us consider the tracking control of a
two-link SCARA type manipulator shown in Figure 1. € =[6, 6,] and u=[u, u,] one can

define M(6), B(0,0) and f(H)and g(6) as below:

Py +2pscos(6,)  p,+ pycos(, )}

M) = |:
P> + ps3cos(6,) b,
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—6,pysin(6,) — (0, +6,)p, sin(@)}

B(@,@):{ 6,p,sin(6,) 0

Klél +K, Sgn(é’l)}

1= |:K192 +K, sgn(éz)

(m, +m, )l cos(6,) + m,gl, cos(6, + 6, )}

9) =
8(©) { m,gl, cos(6, + 0,)

where the inertial parameters are set as p, =3.16, p,=0.106, p,=0.173, m, =10.6kg,
m, =485kg, [,=036,,=024, K, =1, K, =10, c=1s"".

The initial conditions and the desired trajectories are selected to be 6,(0)=0.025 ,
6,(0)=0.05, 6,(0)=0.02, 6,(0)=0.001, and 6, =60,,=3.0. The simulation results are
presented in Fig. 3.1.3-3.1.10.

3.1.6 Numerical comparison analysis

The position and velocity errors under relay sliding mode control with equivalent control term
shown in Fig. 3.1.3 indicates that the convergence of the errors is much better and faster than
the errors under relay sliding mode control with equivalent control like method depicted in Fig.
3.1.5. However, the performance under robust sliding mode PD control with inexact dynamics
shown in Fig. 3.1.7 prove to be of a quite fast convergent nature as compared with the other
two controllers. Viewing the control inputs given in Fig. 3.1.4, Fig. 3.1.6, and Fig. 3.1.8, it can
be seen that there exist quite a high rate of chattering which may be intolerable due to physical
limitations of the actuators. This is simply because of signum function in the control law (20).
Replacing the pure signum function with a saturation function yields the position and velocity
errors depicted in Fig. 3.1.9 and the control inputs shown in Fig. 3.1.10. It can be noticed that
the error profiles under sliding mode PD saturation control seem to be equally well as
compared with the one under the robust sliding mode discontinuous PD-control. Moreover, the
chattering is completely removed. In other words, the control inputs are now smooth and
reduced in magnitude.

3.1.7 Conclusion

In this paper, three new sliding mode control laws have been considered for robot manipulators
with parameter perturbations. The first two approaches assume that the robot arm dynamics is
exactly known. The first variable structure control law uses the equivalent control method. The
second control method employs an equivalent control like term combined with discontinuous
control. The last control method is proposed to compensate the unavailable exact information
about the dynamics of the robot arm. The stability analysis is done using Lyapunov's direct
method. The compact form of the results is elaborately derived using linear matrix inequalities.
The robustness of the control laws has been ensured in large. The proposed methods are
implemented to solve the regulation control problem of a direct drive robot arm through
simulations. The results of the simulations clearly indicate that the robust sliding mode PD
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saturation control with inexact dynamics perform better than the other two controllers which
use exact robot dynamics with equivalent control and equivalent control-like methods.
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Figure 3.1.1 The 4BC triangle
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Figure 3.1.2 Joint positions of the manipulator
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Figure 3.1.3 Position and velocity errors under sliding mode relay control with

equivalent control method
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Figure 3.1.4 Control inputs under sliding mode relay control with equivalent control method
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Figure 3.1.5 Position and velocity errors under sliding mode relay control with equivalent

control like method
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Figure 3.1.6 Control inputs under sliding mode relay control with equivalent control like

method
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Figure 3.1.7 Position and velocity errors under robust sliding mode PD control with inexact

dynamics

Figure 3.1.9 Position and velocity errors under robust sliding mode PD saturation control with

inexact dynamics
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Figure 3.1.10 Control inputs under robust sliding mode PD saturation control with

inexact dynamics

3.2 Robust position and tracking variable structure PD-controllers design methods
for robot manipulators with parameter perturbations

In this paragraph two types of new variable structure PD-like controllers with and without full
dynamics knowledge are designed for position and tracking stabilization of robot manipulator
systems with parameter perturbations. The main contribution of this work is the design of the
tracking PD-controller for robot manipulators without using full dynamics knowledge. The
position controller is built upon the well-known equivalent control method. The tracking
controller does not require any exact information about the robot manipulator dynamics and
employs only the measurable joint variables and bounds of some robot perturbed parameters.
The sufficient conditions for the existence of a sliding mode and the rate of convergence are
investigated. Moreover, the global asymptotical stability conditions are also derived with a
Lyapunov full quadratic form used for the first time. Linear matrix inequalities are often
addressed. Reduced design conditions are also derived. Both analytical and numerical
comparisons with the Qu and Dorsey control laws and stability results are also emphasized.
Simulations are carried out with a two-link direct drive robot arm model. The simulation results
have shown that the control performance of the designed system is satisfactory.

3.2.1 Introduction

Variable structure control schemes [13-14] are well known approaches in the robust control of
uncertain systems. A survey of the robust control methodologies is given in [15]. A survey
paper [16] presents an overview of six different robust control schemes for robot manipulators.
For the trajectory following problem of a robot manipulator, a simple linear robust feedback
control law with constant gain matrix is proposed in [17]. It is shown in [18] that judicious
choices for the feedback gains make the computed torque control law robust under bounded
unknown dynamics. Robust stability conditions for linear PD-control and robust PID-control of
robots are considered in [19-20]. An introductory look at how robust control relates to the
control strategies for single-input single-output systems is given in [21]. Relay-like sliding
mode controllers with equivalent control term are developed for robot manipulators in [22-23].
A PD-like control law with a switching term is utilized as a feedback term in [24]. A modified
design of PD-like variable structure controller is considered in [25].

119



In this paragraph a new robust variable structure PD-controller with and without full dynamics
knowledge are designed for robot manipulators with parameter perturbations. Assuming that
exact knowledge of the robot dynamics is available, well-known equivalent control term is used
in the design of set-point control of robots. The main contribution of this work is the design of
the PD-controller without using robot full dynamics knowledge for the tracking stabilization of
robot manipulators. The second controller uses only some measurable joint variables and bound
values of robot system parameters like inertia, Coriolis and centrifugal matrices which are very
hard nonlinear functions of joint variables and sources of strong natural parameter
perturbations. The conditions for the existence of a sliding mode and rate of convergence are
investigated. Moreover, the global asymptotic stability of the proposed controllers is also
analyzed. The use of linear matrix inequalities is often addressed. Reduced design conditions
are also derived. The control algorithms are tested with a two-link direct drive robot arm. Both
analytical and numerical comparisons with the Qu and Dorsey control laws and stability results
are also emphasized. The simulation results indicate that the performance of the designed
system is satisfactory.

3.2.2 Preliminary results and problem statement: PD position control design with
full dynamics knowledge

In this section, it is assumed that information related to the dynamics of the robot manipulator
is exactly known. The conventional equivalent control method is considered in the controller
design. The goal of the proposed scheme is to achieve a set-point regulation. The analysis given
in this section serves as a framework in order to obtain main results. The dynamics of an n-link
manipulator is given by the following equations:

O=w, o=M@O) [—B(e, 0)0- £(6)+ u(z)] (3.2.1)

where ¢ is an nx1 angular position vector, w is an nx1 angular velocity vector, M (6) is an
nxn symmetric positive definite inertia matrix, B(6,6) is an nxn Coriolis and centrifugal

matrix, f(d) is an nx1 joint friction vector and u(f) is an nx1 control input vector. Let
6, (constant) and w, (=0) denote the desired trajectory. Then the error dynamics is written:

boi. H=M©O) [—B(e, O)a— f(6)+ u(z)J (3.2.2)

where @ and & represent the error trajectory, i.e. 0 = 0-0,, o =w-w,. The variable
structure position PD-control law with full exact dynamics knowledge is chosen as:

w(t) = u,, (1) - (KPH§ H + Kd||5||)sign(s(t)) (3.2.3)

where u,, (¢) represents the equivalent control input, K, is a positive constant scalar position
() is

the Euclidian norm, sign(s(?)) = [sign(s1 ®)),...,sign(s, (t))]T as the vector of signum function

gain parameter, K, is a positive constant scalar derivative gain parameter to be selected,

and s(¢) is a conventional sliding surface given as:

s()=CO + & (3.2.4)
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where C is a nonnegative constant design matrix to be selected. The standard equivalent
control law is given by:

§(t) = 0= u(t) =u, (1) = [- M(O)C + BO.O) o + 1(0) (3.2.5)

Substituting the control law (3) with (5) into (2) yields the following error system
dynamics:

G=6. H=-Cio-M®©) (Kpué |+, ||c7)||)sign(s(z)) (3.2.6)

The control problem can be formulated as choosing K, and K, so that a multivariable sliding

mode exists and the sliding robot system is guaranteed to be globally asymptotically stable.

3.2.2.1 Sliding conditions

The following lemma presents the sufficient conditions for the existence of a sliding mode for
the position control.

Lemma 4: The stable and 7 — stable sliding mode on s() =0 (4) always exists in the system
(6) driven by the controller (3), if the following condition holds:

K,>|c|, K. K, Z%meax”M(H)"F (32.7)

where 7 is a positive constant scalar and |(-)],. = 1/tracei(-)r ()' is the Frobenius norm and » is

degree of freedom of robot.

Proof: A Lyapunov function candidate is introduced as:

V= % [s)" sign(s(enf (3.2.8)

Taking the time derivative of (7) along the state trajectory of system (4), and (6) yields:

P =—s(0)" sign(s()[sign(se)] M(0) [, ]+ . |@|bign(s() (3.2.9)

It follows from (9) that ¥ is already guaranteed to be negative definite. However, it might be
desirable to use an 7 - reaching condition [26]. Choosing K , in accordance with (7) in (9) and

employing the Cauchy-Schwarz triangle inequality gives:

V< =K, |s@]s0)" sign(s@)[sign(s(e)] M () 'sign(s()

| [s@)]” <=nfs|
F

n (3.2.10)
¢ m;lx"M (9)|

n

<Kl <<

Therefore, if condition (7) are fulfilled then the sliding inequality (10) reduces to ¥ <0 for all
s(t) # 0. This concludes that the sliding motion is always generated on the switching surface

s(t)=0. The rate of convergence for the state errors can be determined by the rate of decay of
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(8). It can be inferred from (8) that %"s(t)"2 SVﬁ%n"s(t)"2 which is employed in (10)

rt

appropriately. Assuming that 7 has an exponential solution of V=V e with ¥, being a
-1
constant positive scalar and r denoting the rate of decay of V' yields r> 2(m51x||M @ F) K,.

Using (8), the following is verified and obtained as:

max

O <[C <20 =[] <P (cm e ) (B.2.11)

where C'= [C In] and x:[§ 5]T. This shows that convergence of state errors is fast as
much larger as K, is chosen.

3.2.2.2 Global stability conditions

The following theorem introduces some additional conditions to globally asymptotically
stabilize the robot regulation system.

Theorem 4: Suppose that the conditions of Lemma 4 hold, then the error system (6) driven by
the controller (3) is globally asymptotically stable if the following conditions hold:

R(0,0)>0,

. 2 . 1
| max|[P(0,6) ( in 4 R(e,e))
ko[ (e | B OOk o)
+5(”A"F +[w], )%X"M(@)"F
(3.2.12)
where

P(6,0) = %[ATM(H)A +WM(OW" — 1, C" M (O)C |

%[ 1,C"M(O)C - A" M(0)A-WM @)W |C”!
R(0.0)=R(0.0)" = P(0,0)' C" +(C") " P(0.6)
1 - . ) ) and C:ﬁ(A"“doIn)a /10=W02+d02,
+E(CT) [A7M @) A+ WM @OW - 1, C"M(O)C]C Hy

W =wd,, D=dl,, det(4) %0, detld,l, —w,24™ ) 0 with scalars w, and d, .

no’

Proof: A positive definite full quadratic form of Lyapunov function candidate can be chosen as

V(téa)—l§T 4 wlme) o, T4 wla (3.2.13)
20l iwt bl o M@ | W' D& -

n
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where A, W and D are constant gain matrices which are selected as described in the statement
of Theorem 4. Taking the time derivative of V(z, 0,) along the state trajectory of system (4)
and (6) gives:

V(@,,0) :%5 AT @) A+ wa1 @)W + 07 (AT M(©O) A+ WM OWT + 5, CT M (O) >
+ E)T[ 14,CT M (0) +% yOM(e)}E)
w07+ WO - M) &, 6]+ K| bign(s )
(3.2.14)

Choosing K, in accordance with (7), the last summing term of (14) can be separately

rearranged as follows:
L=—u, [5 TCT M(9)Ca + aN)TM(H)CaN)]— Lo (Kpué “ 4 Kd||5||)s(t)rsign(s(t))
. 0'CTM(0)Ca
TN e MO CE
<07 CTK ,CO+0TRCTK, + CTM(0)Clo+ & [K 1, + M(0)Cio

}%Kdlls(r)uz

The right-hand part of L is substituted into (14) appropriately to get

~T ~
V(t,0,)< —{q H{q (3.2.15)
9 w
where
H,'=H,=H,
H,,=HC" - P(6,0),
Hy,' = H, =(C" ' HC + R(6,0)- P(0,6) ¢ - (C" ] P(6,6)
And

H=pu,C"K,C —%[ATM(H)A + WM(H)WT]. Applying Schur’s complement to H yields:

H>0&sH, >0, Hy,—-H, H, H,>0 (3.2.16)

Rewriting (16) explicitly gives: H >0, R(6,0)—P(0,0)" H'P(0,0)>0. Then (16) can be
rearranged as follows:

R(6,0)>0= R(6,60)- P(0,0) H'P@6,0)> {rgign [R(0.6)]- max|P(0,0)], [ (77 )}1}1,1 >0

which implies to fulfill
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A (H)> 11K 420 (C7C)

min

1, Iyt (3217)

6,0

> mar](0.0)]* minAlr0.0)])

Eventually, in view of (17), if conditions given in (12) are satisfied then the inequality (15)
reduces to

~T ~
V(t,0,d)< {q H{q <0 (3.2.18)
Hence Theorem 4 is proved.

3.2.2.3 Reduced design

The design parameters can be chosen more systematically. The gain matrix 4 can be selected
as A=ayl, with a, #0. Then C =c¢yl, where ¢, = ,uoflwo(a0 +d0). Choosing a, ,w, and d,,

such that a02 + wo2 =2 ,uocoz yields the following: P(6,0) = % ,uocoz [M(H) - co_lM (8)| and
R(6,0) = Ho |:COM (@) - %M (0)} . In order to guarantee R(6,6) >0, one needs
Co > %rr;%x”M (H)HF (ngn A[M (9)]}1 . Then the control parameter K, is chosen in accordance
with

1 2 1 .

2 -1 . . . .
K> [m;ix”M(@)”F + ¢ n;%xHM(Q)“F} [co min i[M(H)]—En;%xHM(H)HF} + n;%xHM(H)HF
It is clearly seen that the lower bound for K, does not depend on «, ,w, and d, explicitly.
Choosing an appropriate ¢, seems to be sufficient to be able to select K,. The question is
whether this situation guarantees existence of real solutions for the remaining gain parameters.
The following are the five constraints in the selection of these parameters:

2 2 2 2 2 2
(Day £0, (2)ady —w," 20, ()ay” +wy” =2u¢,"s Dwy” +dy” =y, S)wylay +d,) = e,

A
Assuming that x4, and ¢, are set, these expressions can be easily verified if an 4BC triangle
shown in Fig. 3.2.1 with m(BAC)=135", m(ADC)=90"|4B|=\[u,. |AC|=co\241, ,
|AD| =W,

BD|=d, and |D(|=a, is carefully investigated with Euclid’s metric formulas: (1)

A
Since ABC can be drawn, a, is a nonzero side length. (2) The square of the height of the
hypotenuse is equal to the product of the portions that the height intersects on the hypotenuse.

A
ABC 1is not a right triangle, thus the formula does not work. (3, 4) Applying Pythagorean

A A
theorem in the right triangles 4DC and ADB verifies them respectively. (5) The left-hand part
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A
gives twice the area of A4BC. Using trigonometry to compute twice the area as

A
2s(ABC) = 2% Lo Co~ 21, sin(135°) gives the right-hand part.

3.2.3 Main results: tracking PD-controller design without full dynamics knowledge

In this section, it is assumed the controller to be designed has only inexact knowledge about the
dynamics of the robot. The controller knows only the lower and upper bound values of the
robot system parameters. These parameters involve very complicated nonlinearities and they
are sources of strong natural parameter perturbations. The controller is considered to be a
tracking type one. The error dynamics of the robot system can be rewritten as follows:

~ . -1 . . .. .

0=0, o=M(®O) [— B(0,0)@— f(0)—B(6,0)0,(t)— M(6)0,(t) + u(t)] (3.2.19)
A robust tracking control law can be introduced as:

u(t) = —(K,, +K, ”5 “ +K, ||5||)sign(s(t)) (3.2.20)

where K, is a positive constant scalar relay gain parameter to be selected.

3.2.3.1. Sliding conditions

The sufficient conditions for the existence of a sliding mode in the robot tracking system are
given with the following lemma:

Lemma 5: The stable and 7 - stable sliding mode on s(t)=0 (4) always exists in the error
system (9) driven by the variable structure controller (20), if the following conditions hold:

b

K, = mgx” f («9)” + max“B(@, 19)“F max

‘90, (t)” + rn;lx"M (0)” e rntax“éd (¥)

0.0
K, 2[c], K, ~max|p (0)] ], +max|B(@.0)] ] (3.2.21)
Ky zn+max|M @), [c],
Proof: Let a positive definite Lyapunov function candidate be selected as
V= %S(Z)TM(H)S(t) (3.2.22)

Since %M (0)-B(0, 9) is skew-symmetric, the time derivative of V' along the state trajectory
of (19), and (20) is:
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M(0)Céd+ B(6,0)CO- f(0)—B(6,0)0,(t) - M ()8, (¢)

"Nk, ok ool Joto] i)

< —||s(t)||[K, —max “ f (6’)” —rr;jagx “B(H, 9)”F mtax“éd (t)” —max ||M (49)" » Max “éd (z)”
(3.2.23)
+( K, ~max 80.0)], |, Jo] +(k, ~max @), e, Jlow]

If conditions in (21) are partially fulfilled, ¥ <0 is guaranteed. However, the multivariable
n —reaching condition can be derived. For this, K, and K, are chosen as in (21) and the

Cauchy-Schwarz triangle inequality is employed in (23) to get

v <&, - maxlps @) ], Jsof <-nlscof (3:224)

Therefore, it follows from (24) that conditions in (21) ensure that ¥ <0 for all s(¢) # 0. This
concludes that s(¢r) —> 0 asymptotically. The rate of convergence of the state trajectory errors
can be computed similarly as done in Section 2.1. It follows from (22) that

2(m5axz[M(0)]}‘ v<[so) < z(mgin;L[M(e)])Ll ¥ whose left-hand part is substituted into (24)
to get V< —Z(K = mgx"M )|, Flmgx M (6’)”1 V. The exponential solution proposed in
Section 2.1 is applied to obtain > Z(K - m;ax”M )|,/ lm;ax AM (9)]}1. Then following the
approach shown in (11) yields:

] (Km0, Icl, [ meam o]

I < \/21/0 | (CC")min A[ 1 (0)] e

Therefore, the convergence of state errors can be improved by choosing K, as large as
possible.

3.2.3.2. Global stability conditions

In order to make the robot tracking control system globally asymptotically stable, a theorem is
introduced as follows:

Theorem 5: Suppose that the conditions (21) of Lemma 5 hold, then the error system (19)
driven by the discontinuous sliding mode controller (4) and (20) is globally asymptotically

stable if the additional conditions given in (12) and K, >||C| . K, are fulfilled with P(6,6) and
R(H,é) as:

126



P(0,6) = % [47M @) 4+ Wat O - 1, CTM(O)C]
+%[,uOCTM(6)C — AN A-wa O ! —% 14,CTB(0,6)
R(0,6)=P(0.0)" C" +(C" ' P(0,6) +%(CT [ a0y 4+ wrr o !
_% wlCT @)+ 0] (3.2.25)

where C, y,, A, W and D are defined in the statement of Theorem 5.
Proof: The Lyapunov function (13) can be used. Time derivative of (13) along the state
trajectory of system (4), (19), (20) is:
V(t,0,0) :%éT [ATM(Q)A+ WM(&)WT]é+éT [ATM(H)A+WM(9)WT + yOCTM(H)}é[)
& [CTM(H)+%M(0)}T)
(3.2.26)
+(éTCT @ ) Lo [—B(@, O)io— £(0)-B(6,0)0, (1)

—M(0)d,(t) —(K,, +K, “9” +K, ||cb||)sign(s(t))}
Denoting the last summing term as L, it can be rearranged as follows:

L=—1,0"C"B(6,0)@ — p1,&" B(0,0)@ — py5(t)" [ () — s (2)" B(6,6)6, (1)
— 050 MO, (1)~ 1K, 5(0) sign(s(0)— 1, (K., 0]+ K, ] s signs(0)

< -ty [K, - mgalx“ f (9)” - ma_x“B(ﬁ, 9)”F max ‘éd (t)” — mgax”M (9)" p mtaxuéd (t)”

0,60
+07CTB(6,0)d+ " B(O,0)d + Kd||s(t)||2]
<07 CTK,CO+0TRCTK, + CTBO.O) o+ &7 [K 1, + B©.6) |}

Substituting the right-hand part of L into (26) gives (15). The proof proceeds with following
from (16) to (18).

3.2.3.3. Reduced design

The gain selections used in Section 2.3 can as well be used. This time ¢, has to be chosen such
. -1
that ¢, > rg%x“B(H, Q)HF(mein /I[M (:9)]) and the control gain parameter should be selected in

accordance with
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-1

2
K,> {co max|M (0)] %%xHM(e)HF +%rr;%x“3(9, Q)M [co ngnxi[M(H)]—r%xHB(H, Q)M

+max|a (),
3.2.4 Analytical comparison analysis: Qu and Dorsey control laws

For an analytical and numerical comparison, for example with the Qu and Dorsey control laws
[17-18] and stability results, some difficulties and shortcomings which are considered in [17-
18] and should be overcome can be mentioned here. For example, it is not desirable to require
acceleration measurements in the control law. It is desirable to use a simplified control law. The
bound on the tracking error should be constant if possible. Moreover, several requirements are
stated in [17-18] to make the linear feedback a viable means of solving the tracking control of
robots. Qu and Dorsey control laws are developed to fulfill these requirements. Therefore, the
proposed controller in this paper can be evaluated in view of these criteria. The control law (20)
does not use any acceleration measurements. The structure of the control law (20) is of
nonlinear switching type with linear feedback gains. Since the dynamics may not be known in
the usual case, the switching nature of (20) makes it highly insensitive to parameter
uncertainties. Explicit expressions that depend on the initial conditions and bounds on the
nonlinear dynamics are derived for the lower bounds of the feedback gains. Some of the bounds
on the nonlinear dynamics are not constant and are proportional with the tracking error. For this
reason, an analytical relationship between the bound of the tracking error and the scalar
feedback gain K, for any initial condition is obtained in (25). It follows from (25) that
increasing the feedback gains monotonically decrease the bound on the tracking error and that
the bound on the tracking error tends to approach zero as ¢ — « in the limit. An important issue
of whether asymptotic stability is feasible using finite constant gains is also taken into
consideration. Theorem 2 shows that globally asymptotic stability of the tracking error is
guaranteed if the feedback gains are constantly and finitely selected to be larger than certain
bounds on the nonlinear dynamics. Even if the bounds on the nonlinear dynamics are unknown,
the tracking error system can still be made bounded by choosing the scalar gain K, large
enough. Then the error system becomes asymptotically stable as K, — o« . Thus, the proposed

control law is shown to be equally fulfilling the basic requirements mentioned by Qu and
Dorsey.

3.2.5 Simulation example

A simple two-link direct drive robot manipulator was simulated to test the robust control
system designed in Section 3. The manipulator was modeled as two rigid links with point
masses at the ends of the links. The dynamic equations can be accessed from [23-24].

To illustrate the feasibility of the designed controller let us consider the tracking control of a
two-link SCARA type manipulator (see Fig. 3.1.2). 0 = [491 492] and u = [u1 uz] one can

define M (6), B(Q,é) and f(0)and g(0) as below:
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M(0) = {M +2pycos(60,) p, + p;cos(6, )} ’
P, + pycos(6,) P

B(O (9) _| - 921’3 sin(6,) - (91 + 92 ) p;sin(6,)
s é1p3 sin(Hz) 0 9

f(g) :|:K191 + KZ Sgn(él):| ,

Kléz +K, sgn(éz)

(m, +m, )l cos(6,) + m,gl, cos(6, + 6, )}

0) =
g0 { m,gl, cos(6, +6,)

where the inertial parameters are set as p, =3.16, p,=0.106, p,=0.173, m, =10.6kg,
m, =4.85kg, [,=036,1,=024, K, =1, K, =10, c=1s"".

The initial conditions and the desired trajectories were selected to be 6,(0)=6,(0)=1,
6,(00=6,(0)=1 6,,(t)=6,,(t)=sin(r). The proposed control law is implemented with
cy=2.6438, K, =10.1667, K, =11.8957, K, =22.6638. For a numerical comparison, Qu and

Dorsey control law [17] is also implemented with the vector of gravity terms, G(g) =0, matrix
of dynamic friction coefficients, F; =0 and vector of disturbances, 7z, =0 to make the model

dynamics (1) coincident with the one in [17]. The Qu and Dorsey control law [17] is given as
u(t) = 7’[a1 I}x where the scalar gain parameters « and y'are selected as « =0.5 and y'=150.

The results of the simulations are shown in Fig. 3.2.2-3.2.7.
3.2.6 Numerical comparison analysis: Qu and Dorsey control laws

The position and velocity errors under pd tracking variable structure control shown in Fig. 3.2.2
indicates that the convergence of the errors is slightly better and faster than the errors under
robust tracking control by a linear feedback law depicted in Fig. 3.2.6. The control inputs given
in Fig.3.2.3 exhibits a high rate of chattering which may be intolerable due to physical
limitations of the actuators. This is simply because of signum function in the control law (20).
Replacing the pure signum function with a saturation function yields the position and velocity
errors depicted in Fig. 3.2.4 and the control inputs shown in Fig. 3.2.5. It can be noticed that the
error profiles under variable structure saturation control are much better than the ones under Qu
and Dorsey control law for this design example. Moreover, the chattering has also been
removed now. Therefore, the control inputs are smooth and smaller in magnitude as compared
with the Qu and Dorsey control inputs given in Fig. 3.2.7.
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3.2.7 Conclusion

Two types of robust variable structure PD controllers have been designed for the position and
tracking stabilization of robot system with exact and inexact knowledge of the robot arm
dynamics. For the set-point regulation, the equivalent control method is used. Based on this
design approach the robot tracking controller with inexact dynamics knowledge is designed. It
is assumed that angular joint variables can be measured. Moreover, the bound robot parameters
such as inertia, Coriolis and centrifugal matrices are also available. These robot parameters are
sources of strong state parameter perturbations. The sliding and stability conditions are
presented by using a Lyapunov full quadratic form combined with linear matrix inequalities.
The rate of convergence is derived. Reduced design is also given. The simulations are
performed to test the proposed design approach. Analytical and numerical comparisons with
linear control laws are discussed. The results of the simulations clearly indicate that the
practical results confirm the theoretical conclusions.
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Figure 3.2.1 The 4BC triangle

am

] i B -] 0 2 . L] LL- . ]
Welooiy srars un.n.r:':ﬂwrﬂ ard on anldaak)

[T

n B -] m 12 1 & | XN
Tirrsa i)

Figure 3.2.2 Position and velocity errors under robust PD tracking control with inexact

dynamics
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Figure 3.2.3 Control inputs under robust PD tracking control with inexact dynamics
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Figure 3.2.4 Position and velocity errors under robust PD tracking saturation control with
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Figure 3.2.5 Control inputs under robust PD tracking saturation control with inexact dynamics
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Figure 3.2.6 Position and velocity errors under robust tracking control by a linear feedback law
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Figure 3.2.7 Control inputs under robust tracking control by a linear feedback law

3.3 A new variable structure PID-controller design for robot manipulators

In this paragraph a new variable structure PID controller design approach is considered for the
tracking stabilization of robot motion. The work corroborates the utility of a certain PID sliding
mode controller with PID sliding surface for tracking control of a robotic manipulator. In
different from general approach, the conventional equivalent control term is not used in this
controller because that needs to use the matching conditions, exact full robot dynamics
knowledge and unavailable parameter uncertainties. Though the sliding surface includes also
the integral error term which makes the robot tracking control problem complicated, the
existence of a sliding mode and gain selection guideline are clearly investigated. Moreover, in
different from uniformly ultimately boundedness, the global asymptotic stability of the robot
system with proposed controller is analyzed. The sliding and global stability conditions are
formulated in terms of Lyapunov full quadratic form and upper and lower matrix norm
inequalities. Reduced design is also discussed. The proposed control algorithm is applied to a
two-link direct drive robot arm through simulations. The results indicate that the control
performance of the robot system is satisfactory. The chattering phenomenon is shown to be
overcome by the use of a saturation function in the control law in place of a pure signum
function. The replacement of a saturation function with the pure signum function yields a
smooth transient performance. The proposed approach is compared with the existing alternative
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sliding mode controllers for robot manipulators in terms of advantages and control
performances. A comparative analysis with a plenty of simulation results soundly confirmed
that the performances of developed variable structure PID controller are better under than that
of both classical PID-controller and an existing variable structure controller with PID-sliding
surface. Simulations are carried out with a two-link direct drive robot arm. Simulation results
show that the control performance of the robot system is satisfactory.

3.3.1 Brief analysis of robot control systems

A well known approach to the control of uncertain system by non-linear feedback laws is the
variable structure control [28]-[31], etc. In recent years, the variable structure principles are
widely used for the stabilization of robot motion. Variable structure control is a no simple and a
powerful control technology. It is often used to handle the worst-case control environment:
parametric perturbations with lower and upper bounds, nonlinearities, external disturbances,
friction and complexity, etc. Precise dynamic models are not required and the control
algorithms can be easily implemented. Set-point regulation control problem is considered in
[32] and [33]. A relay type of sliding mode controller with equivalent control approach for
robot manipulators with parameter perturbations is investigated in [34]. A continuous sliding
mode control law is used in [35], [36]. A sliding mode controller is proposed in [37] where
simultaneous position and force control of constraint robot manipulators are taken into account.
An integral type of variable structure control approach is presented in [38] for a guided missile
system. The general approach in the sliding mode control is that the control law consists of two
parts. One is the conventional equivalent control and another is the switching part. For the
switching part, similar structure is also well documented in [39]. An adaptive variable structure
control for robot manipulators is considered in [39].

An augmented sliding surface design for robot manipulators is considered in [40]. Both sliding
and stability issues are taken into account. Integral variable structure controllers for robot
manipulators [41] and electrohydraulic velocity servo systems [42] are designed by Chern and
Wu. A first survey of robust control has been presented in [43]. Another survey paper [44]
presents an overview of six different robust control schemes including current robot state
coordinates for robot manipulators. Discontinuous min-max control term combined with the
linear control term is used in robot control systems. But, sliding and stability conditions are not
considered in this paper. A new combined variable structure controller with PID sliding
surfaces for robot manipulators is proposed in [45]. This controller consists of two parts: 1)
linear PID-control and 2) discontinuous unit vector term with PID sliding surface. Both regular
and adaptive versions of the controller are presented. However, the control law involves a
nonlinear vector norm. Exponentially stable sliding conditions and uniformly ultimately
boundedness of robot system are investigated. The simulation results have demonstrated that
the PID sliding surface provides faster response than that of traditional PD-manifold controller.
A more recent paper that deals with chattering issue can be seen in [46]. Passivity-based
adaptive and non-adaptive chattering-free sliding mode controllers are proposed. A desired
transient response with global exponential convergence of tracking errors is obtained. A new
variable structure PD-controllers design method for robot manipulators with parameter
perturbation is developed in [50].

In this paragraph, a new variable structure PID-controller with PID sliding surface [51] design
approach is considered for the tracking stabilization of robot motion. The work corroborates the
utility of a certain PID sliding mode controller with PID sliding surface for tracking control of a
robotic manipulator. In different from general approach, the conventional equivalent control
term is not used in this controller because that needs to use the matching conditions, exact full
robot dynamics knowledge and unavailable parameter uncertainties. Though the sliding surface
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includes also the integral error term which makes the robot tracking control problem
complicated, the existence of a sliding mode and gain selection guideline are clearly
investigated. Moreover, in different from uniformly ultimately boundedness, the global
asymptotic stability of the robot system with proposed controller is analyzed. The sliding and
global stability conditions are formulated in terms of Lyapunov full quadratic form and upper
and lower matrix norm inequalities. Reduced design is also discussed. The proposed control
algorithm is applied to a two-link direct drive robot arm through simulations. The results
indicate that the control performance of the robot system is satisfactory. The chattering
phenomenon is shown to be overcome by the use of a saturation function in the control law in
place of a pure signum function. The replacement of a saturation function with the pure signum
function yields a smooth transient performance. The proposed approach is compared with the
existing alternative sliding mode controllers for robot manipulators in terms of advantages and
control performances. A comparative analysis with a plenty of simulation results soundly
confirmed that the performances of developed variable structure PID controller are better under
than that of both classical PID-controller and an existing variable structure controller with PID-
sliding surface. Simulations are carried out with a two-link direct drive robot arm. Simulation
results show that the control performance of the robot system is satisfactory.

3.3.2 Variable structure PID-controller design with inexact robot parameters

In different from existing, a new robot tracking variable structure PID controller with PID
sliding surface design method is presented. The conventional equivalent control term is not
used in this controller, because we assume that we do not know exact full knowledge about the
dynamics and parameters of the robot arm system. We only know the current value of the
angular position and the angular velocity by measuring the corresponding sensors. In general,

the robot parameters: mass, inertia and M(6), B(6,60), (@), g(0), etc. are not perfectly
known. These measured robot parameters M(0), B(6,0), f(0), g(@) are very difficult

nonlinear functions of @, @, and they intensively vary in some intervals in various depending
variation of @ and €. Although, the general form of the inertia matrix, Coriolis, centrifugal,
friction and gravity effects can be modeled because robot parameters involve a nominal part
and some variation, therefore, the upper and lower matrix norm of these parameters are only
used in the selection of the design parameters. This is an advantage of our design methods:
However, a parameter uncertainty is not presented in evidently form in robot dynamics. The
design parameters of the variable structure controller are parametrically obtained by analyzing
of sliding and global asymptotical stability conditions. These conditions are formulated in terms
of Lyapunov full quadratic form and some min-max matrix norm inequalities.

3.3.2.1 Dynamics of the robot manipulator

Introducing y (¢) = j @(t)dt » one can consider an n-link manipulator [34], [47] whose augmented
dynamics is given by

0

[0)
M (0)'[- B6.6)0 - £(6)- g(0)+u®)]

v
6 (3.3.1)

where  is an nx1 vector of angular joint position integral, ¢ is an »n x1 vector of angular
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joint position, @ is an nx1 vector of angular joint velocity, A (6) is an nxn Ssymmetric
positive definite inertia matrix, B(6,6) is an nx n Coriolis and centripetal force matrix, 7 ()
is an n x 1 vector of joint friction, g(¢) isan n x1 vector of gravity and y(r) isan n x 1 vector
of control input. The state vector of the dynamics is given as x=[y 6 w]. For the

proceeding analysis, we need to construct the error dynamics of the robot arm system. We
denote 6,(¢) as a time-varying reference position vector, the integral of the reference position

t
obtained as w,(t) = I 6,(t"dt', and the reference velocity given by w,(t)=6,(t). Then the
0

deviation of the actual position integral, position and velocity from the reference counterparts
are denoted by w () =w(@)—w, (1), 0(t)=6(t) -0,), () =w(@)-w, (1), respectively. Then the
error dynamics can be written as follows:

I
S D/

(3.3.2)

SIS 1AL
I

M) |- B0.0)i - 1(6) - g(0) +u]- M(©) " B@.6)6, (1)~ 6,(1)

The aim of the proposed controller is to design a general purpose PID sliding mode tracking
controller for the robot manipulator system such that the system (1) will be globally
asymptotically stable.

3.3.2.2 Variable structure PID-controller with PID sliding surface

In order to achieve this particular goal, a sliding mode control law is formed as

ut)=-[K, + & 00|+ K |7 o] + Koo pignts (333)

where K, is a positive scalar relay gain constant, K, is a positive scalar feedback proportional

gain constant, K; is a positive scalar feedback integral gain constant and K, is a positive scalar

(N - ,/(.)T () is the Euclidean

norm, 7 is the transpose of vector or matrix, sign(s(z)) = [sign(s1 ®)),...,sign(s, (t))]T is the signum

feedback derivative gain constant parameters to be selected,

function vector. The conventionally used sliding surface definition involving the position error
and the velocity error of the form s(r) = ¢ + Ae can be extended to the one also including the

integral error of the form s)=s+Ae+A, J‘ edt Where A, and A, are constant positive

definite matrices and e denotes the state error term. Therefore, the augmented sliding surface
function is appropriately introduced as

s(t) = C () + C,0 (1) + @(1). (3.3.4)

where C,, C, are constant design matrices. Concerning the investigation of how these design
matrices can be selected to establish a stable sliding surface, one can set () = 0 along with its
state-space representation as
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o] To, 1, 0o
(1) {o" 0 In]{ﬁ(t)] (3.3.5)

o) |-¢, -c, o, @@

Choosing C, and C, as positive definite design matrices yield a stable reduced error system

given in (5). Having selected the sliding mode control law (3) with sliding surface function (4),
the next step is to choose the design parameters such that the sufficient conditions for the
existence of a sliding mode are fulfilled and then the closed-loop system will be globally
asymptotically stable. For illustration of robustness versus parameter variations, we shall use
only one of robust techniques so- called second method of Lyapunov similar to [48]. The
potentialities of variable structure controller providing the better control performances and
robustness are fully exploited.

3.3.2.3 Sliding conditions

In this section, we introduce a lemma in order to derive the sufficient conditions for the
existence of the sliding mode in the robot-manipulator system. Since when sliding then system
is robust to parameters uncertainty.

Lemma 6: The stable sliding mode on s(¢)=0 (4) always exists in dynamic system (2) driven by
controller (3), (4), if the following conditions hold:

b

K, = maax“ f (9)” + mgax” g(0)|| + n;%xHB(H, 9)“F max

\e'd (t)” +max|M ()], mtaxuéd (t)

K, 2+ max @), 1],
K, 1G], K, - a1 @, |G, - max @), + max]50.0)] I,

K, 21, K, ~max @], |G I, + max|B0.6, I, 336

where ||, =+/trace(()" () is the Frobenius norm, 7 is a constantly selected positive scalar.

Proof: Let us choose a Lyapunov function candidate as in [33]:
V(s(t)) = ! s()" M(0)s(t) (3.3.7)
2
Time derivative of V' along the state error trajectory of system (2), (3), (4) is given by
V =s(t)" M(0)s(t) + %s(t)TM(H)s(t)z s(z)TM(e)[clyi +C,0 + |+ %S(Z)TM(H)s(t)
= s(t)TM(H){C1§ + G- M(0) ' [B0.6)d+ 1(6)

+ 20+ K, + K, 7]+ K. |7+ K. | bignGs o)

-M(6)"'B(0,6)6,(1)- 6, (t)}+%s(t)TM(l9)s(t) (3.3.8)
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Let us use an identity defined as B(6,6) = %(M @-J ) [34] where J is a skew symmetric

matrix. Then we can rewrite V as
V=5 [ M(O)CI+M(O)C,0-B(6,0)d~ f(0)-2(0)

(&, + K, [0+ K.+ K, | sign(s()~B(0.0)8, ()1 (0)d, 1) (3.39)

+5(t)" B(6, 0’)[@5 +C,0+ a)] +%s(t)TJs(t)

= s(t)" {B(e, 6)Cr + [M(@)c1 +B(6, 0')02]9” + [M(@)c2 —B(6,0)+ B(6, 9’)]@— f(6)- g(e)}

-(k.+k,

O+ K. 7]+ K. @l }s(0” sign(s0) - s@)" BO.6Y, ()= () M@©)6; (1)

Using the fact that s(r)" sign(s(¢)) > ||s(t) ,and %s(t)TJs(t) =0. [34] and taking the norm of

the remaining terms, we obtain

7 <Jstol| max | 50,01 1G] 71+ max @) [, +max|z@.), ],

+max| MO, |G | +max] @)+ max| @) | (&, + K, |0

& |+ K, |l ls@)] - 3.3.10)

+sto)|max|B©.0)

max 0,0 s max ), max | 0]

‘F

Now we can rearrange ¥ by taking all the terms into the common parentheses of —||s(t)|| and

rewrite

V<—|s@|[ K. —m;lx“f(é)“ - n;%x“B(H,é)“F max

6, (1)~ max | M ©)],, max]|é], ()|
o[ & ~max|B@.0) [, )7+ (K, ~max prc@, Jci], ~max|B@.0) [, ]o] 31D

+(K ~max M@ €], )Ilf?’II]
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If K, can be chosen in accordance with (6), and K;, K b and K, are chosen such that

K, > n;%XHB(H, o), Ici] - and &, > max|p(9) |ci] . + ng%xHB(H, o), IC.], - and

K, > m;tx”M (9)|| F||C2|| » then V <0 is ensured and a sliding mode is always generated in the

robot arm system. However, we wish to utilize the #-reaching condition [29, 47]. For our
multivariable case 7 -reaching condition is given by

V=s(t) M(6)i(t) +%s(t)TM(9)s(t) <—n|s@) < —||s(t)||(Kd ~max [M(9)], |G|, ) [||c1 |- 1

K, —rg%x“B(ga Q)HF "Cl"F

+"C2"p “6’“+"5’"+[ K, _m(?X"M(H)"p "Cz"F "Cl"FJ"l/;"

(3.3.12)

Kp _m(?X"M(H)"p "Cl "F _HHI%X“B(H’ 9)”F "C2||F —"C " “é‘ﬂ
K, -max M@, [C], v

<—n|soff

Let us choose K; and K, in according with (6) and assuming that K, > mgx”M (0)|| F||C2|| oo

we can rewrite (12) as follows

v <sollk, -maxpo), I, ol Joi+Ic.l, o] + 1)< -nlsof (33.13)
We can utilize the Cauchy-Schwarz triangle inequality of the form

[l 7]+ el Jow] +law] e+ c.ow+a@w)| =lsw)

Then Eq. (13) is reduced into

v <-{&, ~max|M @), |G|, Js o <-nlsf
(&, ~maxpr @), |c.], Jsoff <-nlscol (33.14)

We notice that the Eq. (14) implies

2
&, - max|m @)l el -nJslf <o (33.15)
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Hence, if conditions in (6) are fully satisfied, then sliding inequality (15) reduces to ¥ <0 for
all s(¢#) # 0 and we conclude that a stable sliding motion is always generated on the switching

surface s(¢) =0 (4). However, the designed system has to be globally asymptotically stable

with respect to the state coordinates in large. This problem is considered in the next section.

3.3.2.4 Global Asymptotical Stability

The following theorem summarizes the global asymptotic stability conditions for the closed-
loop robot system.

Theorem 6: Suppose that the conditions (6) of Lemma 6 hold, then the dynamic system (2)
driven by controller (3), (4) is globally asymptotically stable, if the following conditions hold

R,(6,0)>0

max|[R(0,0)],

in (R) > ==
min 2 [R,(0.0)]

2
K 121, _
max (0.0},
Ausin (CITCI) Ao (R, Y Ete
min A[ R,(6,6) | (3.3.16)
K z|c). K,
K, z|c, K,
where
R=-4,
2

R = _[CZT(CIT)lA +A7¢ e, - WJ ,

1

%wﬂF%W+§qUﬂm—§q%wﬁx

R©0.0)=(c/ ] P0.0)+ P©.6) ¢ S [c M @)+ M(O)C, )

assuming £ is invertible, then,

P,(6,0)= % ' M(0) +%D +%C2TM(H) —%CZTB(G, 0)— czT(clT)‘IPz(e, 0)-P'C +RP'P(6,0)

139



R,(60.0)= R,(0,6)- P,(0,0) (BT | ' RE " P(0,0)+ B(0.6) (BT | ' R.(6.6) + P(0.6) B P,(6,6)

Proof: Let us introduce a positive definite full quadratic form of Lyapunov function candidate

as
7 o4 W CTM©) [
V(z/7,§,a3)=E 0 w’ D  C'M®|6
@| | M@)C, M@)C, M® |&

(3.3.17)

= %JTA 7+yTwe + ' C M(0)a %5 DO +67C," M(6)@ +%E)TM(¢9)E)

where M (0) is the symmetric positive definite inertia matrix, C, and C, are sliding surface

slope gain matrices, 4 and D are symmetric gain matrices and W is another gain matrix all
with appropriate dimensions such that

A>0
D-W'A'W>0

M(0)-M(0)C,A"C"M(O) - M()C, - M(O)C AW ][ D- WTA’IWT [C/M@)-W"ACTM(6)]>0

We proceed with time derivative of ¥V (i, 0,a,1) along the system dynamics and the state
trajectory of the system (2), (3), (4)

V(7,0,0,6) = 5" Ap + 57 WO+ WO+ CTM(0)d+y" CTM(0)é>+y" CT M (0)éd

+0"DA+0"CTM(O)a+ 0" C M)+ ClM(O)i+ @ M(0)é +%@TM(9)@

(3.3.18)
Substituting the system dynamics (2) into V(7,6,@,1) , we get
Vg,0,0,0) =" 40+ 0" WO +y " War+ 6" CT M@)o+ CTM(0)d+y' CTM(0)d
+0"Déo+ " C," M(0)d+ 0" C," M(0)o+ 0" C,” M (0)d+ &' M(0)éd
(3.3.19)
+%£)TM(9)J)
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=i AD+y" [W+CITM(9)}@+9~TW9+ o7 [CITM(0)+D+ CZTM(Q)}@
+@" [CZTM(0)+%M(9)}£)+[1/7TC1T +67C, mﬂM(a)a‘)

Since C, and C, are selected as the slope gain matrices of the sliding surface, then the last line
in Eq. (19) can be rewritten as

M) =[0"CT+67CT+a" |M(O)6
[l +67CT +a" |M(6) {M(a)-l [-B(©0.0)d— £(0)-2(0)+u |-M(©)" B(©6,0)0, ()0, (1)}
=—"C"B(0,0)d>-6"C," B(6,6)i>—&" B(6,0)d
=s(t)' [ /(0)+2(0)+B(8,0)8,(1)+ M (6)8, (1) |- K,5(1)" sign(s(1))
3 [ K A Ko 3 s si
K [J6L W1l ol 1ot | £-lcl, | 2l J] jorsenon
d d

If we choose K, and K, in accordance with (16), and utilize s(t)Tsign(s(t))Zus(t)” and

taking the norm we get

(*)<—"CTB(0,0)d-0"C," B(0,0)d &' B(6,0)d
-| K, —max “ f(a')” ~max |g(0)- max “B(e, 9’)”F max ”Q, (t)” ~max ||M(e)||“éd (z)M s

-&,[ |G, 171 +]C.], |o]+1d Jlscol
Choosing K, in accordance with (16) and using Cauchy-Schwartz triangle inequality, we get

(*) <" CTB(8,0)®—-0"C," B6,0)d—d" B(6,0)d —K, ||s(t)||2
~T ~T N ak N T N ~ 5, ~1° ~ A~
<" C"B(6,0)@-0"C, B(0,0)@— " B(6, H)a)—[Cll// +C,0+ w] K, [qy/ +C,0+ w}
<K, Ci -2 G K,C,0-y" (207K, + G B(6.0)) @

~0"C,'K,C,0-0" (2G,'K, +C, ' B6.,0)) - (K,1,+B(6.6)) &
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Let us substitute (*) into V (7,0, d@,t) appropriately then we obtain
V(7,0,) <~ C/K,Cop 25" [cfkg,c2 —%Ajé
~T| ~T L .7 o1 L 7y ~ AT| ~T 1 5
27| CTK, +5 G BO.0)~ W~ CTM(©0) |0-07 | ¢ K,C,— W |0
(3.3.20)
Y [CZTKd +%C2TB(6’, 0) —%CITM(H) —%D—%CJM(H))J)

—@" (Kdln +B(6, 9)—CZTM(9)—%M(9)j@

We can once more use the identity given in [34] in the last product term taking into account

()" s()=0,

(%) = —@" (Kdln +B(6,0)-C," M(6) —%M(e)j @
- . 1 ; 1 ).
=& (Kdln +oM©O) 5T =G, M(H)—EM(G)ja)

=-a" (K1,-C,"M(0))d

Now, let us convert V(i7,6,@,1) (20) into quadratic form as follows

~T ~
V: H, H, H; ‘/:

V<-0||H, H, Hy|0 (3.3.21)
@ H13T 23T Hy ||@

H, H, Hj;
where H' =H = leT H,, H,;| and
H; H
T T
H,=H, =C K,C,
T
H,=C K,C,-F,

Hy;=C"K,-P(6.0),

T T T(~71Y! T -1
Hy =H,=C, K,C,+R —-C, (Cl TP1+P1 ¢ G
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b

H,,=CK, +lc2TB(0, 0) —lclTM(a) 1p —1c2TM(0)
2 2 27 2
H, =H,=K, +R,(0,0)- (CITTIPZ(Q, 0)-P,(6,6)" ¢,

where P, R, 1’2(9,9), RZ(Q,Q), P, (6, 9), and R3(9,9) are defined in the statement of
Theorem 1. Therefore, what we should do is to investigate appropriate K,’s such that H

remains always positive definite allowing V(l/7,§ ,m,1) to remain always negative definite for a
global asymptotically stable robot arm system. Now the next step is to choose K, that makes

H nonnegative. Since H is a partitioned matrix, Schur complement is used for this aim. In
accordance with Schur’s complement, the following inequalities are established as

H,>0, Hy,-H, H, 'H,>0 (3.3.22)

_ _ _ 1 _
H33_H13TH11 1H13_(H23_H12TH11 1H13 (sz_leTHn lle) (H23_H12TH11 1H13)>0
(3.3.23)

First of all, considering the first half of (22) we notice that CITK ,C, 1s always positive definite
since K, is a positive scalar constant. For the second half of (22), we have:

—1
H,,-H, H,'H,=R -B'C'K,” (CIT) P >0 (3.3.24)

Assuming that R, >0 and noticing K, >0, we obtain

1 P

Kd g 2’min (CITCI )ﬂ'min (Rl ) B 4ﬂ’min (CITCI ‘min (Rl )

(3.3.25)

Before analyzing the third condition in Eq. (23), let us make a change of variable as

- - — -1 . .o .
H,,—H, H,'H,=R -B'C 'K, 1(CIT) B, =K, then assuming that P is invertible, we
compute

Ty -l : N -l —1 (T :
Hy—H,y Hy, " Hj; =R, (0,0)-F(0,0) G K, (C] ) £(6,0)

= R,(0.0)+ B(60.0) (BT) K, B'B(6.0)-P,0.6) (BT) RE'P6.6)
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Ha = Hy H ' Hyy =5 G BO.0) -3 CTM©) -5 D=2 GO+ ¢ (G ) P(0.0)+ BTG/

_PITCI_IKd_l (ClT )71 })2(0, 9)
=K,B"'P,(0,0)-P,(6,0)

Then the condition in Eq. (23) can be rewritten as follows

_ - _1 -
H;; _H1§H1_11H13 _(H2T3 _H1T3H111H12)(H22 _H1T2H111H12) (H23 _H1T2H111H13)
(3.3.26)
=R,(6,0)-PB,(0,0)" K, 'P(6,0)>0

We assume R,(6,6)>0 and A (Rl)>n;%x“133(0,9)“F2/ n;ignxl[&(@,@')] and notice that

‘min

K, >0 from (24). Thus, we obtain
Fuin K )> 2 (R) =[R2 2 (7 € Ky > max|P0.6)], 2 rmim 2R 0.60)] 3.327)
In view of (27) if conditions in (16) are satisfied, then (20) reduces to

T

V(y,0,0,t) < - (3.3.28)

i ™ X
T

i ™ X
AN
[e)

Hence Theorem 6 is proved. Thus the design procedure is completed.
3.3.3 Reduced design

In this section, we will use Theorem 6 particularly in choosing various design parameters more
systematically. Since the existence of such Lyapunov function depends on purely mathematical
conditions provided by Equation (16), we will once more investigate some “relaxed conditions”
which can be satisfied independently from matrix norms of system parameters. First we notice
that the stability conditions in (16) can be reduced, if we assume in (17) the following
parameter selections: A=ayl,, W=wyl,, D=d,1,, C,=¢]l,, C,=1,, then in order to make

the Lyapunov function candidate positive definite, the parameters should satisfy

n? n?’ n? n?

i) a,>0

2
ii) d, —V;—O >0 agdy —w," >0 (3.3.29)
0
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%]
2 27
iit) (*)=M(0) —CI—M(H)M(H) ——aOzM(Q)M(G) >0
a d, Wy
4

Elaborately working on the condition (iii) in (29), we obtain
2
SO
(*)>min A(M(6))- 5+M max|[M(9)],” >0
0 a, 0 F

Let us choose w, =a, >0, d, = 2a,, then conditions of (i) and (ii) are certainly satisfied and
condition of (iii) takes the form

a,>¢ [c,z +(e,—¢, )2} (3.3.30)

where ¢, = mgx"M ((9)” F2 / ngn E,[M (6’)] . We can reevaluate P's and R, 's, i =1,2,3 as follows:

JXCX) =%[a01n o M(0)—cB(0.6));

R,(60,6) = %In +%[M(9) ~BO.0)] +%[M(9) — B(0,0)]-c,M(0)
1
P(0.0)=-M () sarezl, c(i— —%][Mw) - B(6,0)]
1

1

R(0.6)=(c, —cz)M(9)+%aOIn +%(c1 o) MO)-B©0.0)] +%(cl +o,)[ M(0)-B©0.0)]

+ %[M (0)-B(6, Q)JT M(6) +2iM (9)[1\}1 (0)-B(0, 9)]

0 2

+£[2_2_%J[ M (6)-B(®, e‘)f [M(e) - B(, 9)]

dy \ G
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Now we can explicitly treat the stability conditions given in Eq. (16) as follows,

assumingc—2 >% , and noticing that [M(@) —B(0, 9)]T [M(G) - B(0, 9)]2 0, we can write an
G

inequality of the form

R,(0,0) > [cl min A[ M(0)]-c, max|M ()], +%a0

(¢, +6 )(n;%x ”M(H)HF +max “B(@, 9’)”Fj (3.3.31)

- g, 70, 0, 1. o

S . 3 _ _ _¢
which implies to satisfy an > C,c, +C5¢, + ¢, —— . Thus, we should choose a, such that
a4

a, > Gl TG0 + \/(ngl +656 )" +68,¢, (3.3.32)

where

C, = n;%xHM(H)HF + I‘I;%XHB(G, 9)”F - rrgn /1[M(t9)] ,
¢ = max|M (O)], + n;%XHM(H)HF + n;%x“B(H, 9’)HF :

g, = mgx”M(H)”F[ma_XHM(H)HF + n;%xHB(e, Q)M.

9,0

mylr 0.,

(R) > 22 is satisfied, we first set ¢, +¢, =1 and then

In order to check if A - -
min 2[R;(0.0))

‘min

notice the following inequalities:

I%%XHQ(H, é)HF <& (3.3.33)
where ¢ = %m;lx"M (0)” T (Z—? —%J[n;gaéx”M (Q)HF + r%%x“B(H, 9)” F} . Moreover, we also
have

min AR, (0.0)]> | 2a,? ~ (@, + 56, Jay — ey (3.334)

9,9 3 ’ ao 2 0 2*1 3=2 70 4*1 b
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Therefore, it is possible to find a new lower bound for ¢,

_2
A ()= 22— Lo, % (3.3.35)
Cy 2 113 2 — — — 2
— an _(0201 +0302)"0 —C4Cy

which implies that a, should be selected in accordance with

a, > a, (3.3.36)
Considering Eq. (29), (30), and (32), a, can be chosen such that

a, > max(a,,a,,a) (3.3.37)

where

a ZEIlCIZ +(c, _cl)zjv

a, = (Ezc1 +c50, + \/(Ezcl + 5, )2 + 654012 )/3 s

_ — — — _ 2 —_ 2 05
ay =| Cyc + ey + (czcl +c3cz) +6| cy0 + < 3.

K,>a,/) | 4c}|2——- : (3.3.38)

3.3.4 Simulation Example

To illustrate the feasibility of the designed controller let us consider the tracking control of a
two-link SCARA type manipulator [49] shown in Figure 3.3.1. #=[0, 6,] and u=[u, u,]

one can define M (6), B(6, 9) and f(0)and g(0) as below:
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M) = {A +2p5cos(6y)  p, + p3cos(6, )} ’
D, + p3cos(6,) P
B(0, g) |~ ézp3 .Sin(az) - (91 + 92 ) p5sin(6,) ’
0,p;sin(0,) 0

Klél +K, Sgn(él):|

/0= |:Kl 92 +K, sgn(éz)

(m, +m, )l cos(6,) + m,gl, cos(6, + 6, )}

6 =
g0 [ m,gl, cos(0, + 6,)

where the inertial parameters are set as p, =3.16, p,=0.106, p,=0.173, m, =10.6kg,
m, =4.85kg, 1,=0.36, 1,=024, K, =1, K, =10, c=1s"". The reference trajectory for the
position control problem has been chosen as, 6, (¢)=86,,(t)=0.8sin(0.6¢)rad . Thus, the
reference  trajectory for position integral and velocity are computed as
v, t)=w,,()=—4cos(0.6¢)/3 and @, (¢)=w,,(t)=0.48cos(0.6¢) radsec”'. The simulation
results are given in Figures 2-14.

3.3.5 Comparison and analysis of the alternative controllers’ simulation results

For the purpose of comparison, the simulations have been carried out by considering 3 types of
controllers under the same conditions. The first is the one that is proposed in this work. The
second is the classical PID controller and last is the one that is proposed by Stepanenko [45].
Applying our novel variable structure PID controller, it can be seen in Fig. 3.3.2 that the actual
joint positions succeed to follow the references perfectly though the first joint position makes
temporary overshoots which die out immediately. The switching functions shown in Fig. 3.3.3
indicate a very rapid convergence of the joint states towards the sliding manifolds. The control
inputs are depicted in Fig. 3.3.4 in which a considerable amount of chattering effect is noticed.
Since chattering is intolerable for a proper operation of actuators, there is a need to practically
overcome this problem. The conventional solution in the sliding mode literature is to utilize a
saturation function in the control law in place of the pure signum function. Under this situation,
the trajectory following portrait for joint positions and the convergence of the switching
functions are presented in Fig. 3.3.5 and 3.3.6, respectively, in which the behaviors are almost
same as compared with the former case. The significant gain from this slight change in the
control law can be seen in the control inputs shown in Fig. 3.3.7, which exhibit a chattering-free
smooth and a decreasing control action. As the second phase of the simulations, the classical
PID controller is utilized and the simulations are renewed with the same parameter settings.
The actual joint positions and joint velocities versus their reference counterparts can be seen in
Fig. 3.3.8 and 3.3.9, respectively. It is immediately noticed that there exist a considerable
amount of deterioration in the performance of the robot manipulator. The deviations from the
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references of the joint positions and joint velocities are intolerable unless the control parameters
are chosen high enough which is not needed in the case of our proposed controller. The control
inputs depicted in Fig. 3.3.10 are smooth but are of non-decreasing nature. As the final phase of
the simulations, the control law that is proposed by Stepanenko [45] is taken into account and
the simulations are repeated under the same circumstances. Looking at the behavior of the joint
positions given in Fig. 3.3.11, it can be seen that there exist an intolerable amount of deviation
from the reference trajectories which the same situation observed in the case of classical PID
controller. This outcome is also confirmed when the switching functions are checked from Fig.
3.3.12. There it is noticed that the joint trajectories fail to reach the sliding manifolds exactly
and make fluctuations around them. However, the good thing is that the control torques shown
in Fig. 3.3.13, are chattering free. As seen from Fig. 3.3.14, in different from our switching
functions in Fig. 3.3.3 and 3.3.6, the Stepanenko switching function case is not equal to zero.
Moreover, sometimes the sliding mode conditions are not satisfied. Therefore, this degrades the
control performances. It also needs an attention that this performance may be improved by
high-gain control action which means more energy consumption while the same goal can be
achieved with less control effort by using our newly proposed variable structure saturation
controller. Thus, comparison analysis of three alternative controllers with a plenty of simulation
results in terms of advantages and control performances soundly confirmed that the proposed
controller provided better performances than that in existing.

3.3.6 Conclusions

In this paragraph a new variable structure PID controller design approach is considered for the
tracking stabilization of robot motion. The work corroborates the utility of a certain PID sliding
mode controller with PID sliding surface for tracking control of a robotic manipulator. In
different from general approach, the conventional equivalent control term is not used in this
controller because that needs to use the matching conditions, exact full robot dynamics
knowledge and unavailable parameter information. Though the sliding surface includes also the
integral error term which makes the robot tracking control problem complicated, the existence
of a sliding mode and gain selection guideline are clearly investigated. Moreover, in different
from uniformly ultimately boundedness, the global asymptotic stability of the robot system
with proposed controller is analyzed. The sliding and global stability conditions are formulated
in terms of Lyapunov full quadratic form and upper and lower matrix norm inequalities.
Reduced design is also discussed. The proposed control algorithm is applied to a two-link direct
drive robot arm through simulations. The results indicate that the control performance of the
robot system is satisfactory. The chattering phenomenon is shown to be overcome by the use of
a saturation function in the control law in place of a pure signum function. The replacement of a
saturation function with the pure signum function yields a smooth transient performance. The
proposed approach is compared with the existing alternative sliding mode controllers for robot
manipulators in terms of advantages and control performances. A comparative analysis with a
plenty of simulation results soundly confirmed that the performances of developed variable
structure PID controller are better under than that of both classical PID-controller and an
existing variable structure controller with PID-sliding surface. Simulations are carried out with
a two-link direct drive robot arm. Simulation results show that the control performance of the
robot system is satisfactory.
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Figure 3.3.1 Joint positions of the manipulator
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Figure 3.3.2 Desired (bold) and actual (dashed) joint position errors
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Figure 3.3.3 Switching functions for joint 1 and joint 2
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Figure 3.3.4 Control inputs applied on the joints

Desiradidark) and actualidashy posiion of joim1

0 2 4 b g jlu) 12 14 18 18 0

1] 2 4 B =] 10 12 14 16 14 1]
Time(sec)

Figure 3.3.5 Desired (bold) and actual (dashed) joint position errors with saturation in the

control law

151



Swilching function for joint]

A0

.00 A A A A A : A A A
0 2 4 b g ol 12 14 16 18 20

.. Timefzpch
Swilching Tunction for joint2

R
o[ ST B O
T A -
I S N S N S S O O

10 12 14 16 18 20
Timefzech

=

ka be---
...
{2 I I
@ p----

Figure 3.3.6 Switching functions for joint 1 and joint 2 with saturation in the control law

Input tomque applied on joirm1

W et M
ST SR S SN S — ]

0 2 4 b 5] o 12 14 18 18 0
Ti
Input tnrqulamaep%ﬁ% ok joird2

T

= B -
35 N O O O e O
B T T

Timef=ec)

Figure 3.3.7 Control inputs applied on the joints with saturation in the control law
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Figure 3.3.8 Desired (bold) and actual (dashed) joint position errors under classical PID control

DOesird[dark] and actual[dash) valocity of joint]

X T r r r r r r r r
ol
k]
o
. i i
b 2 4 E & 10 12 14 18 18 a0
-
B T e e
i i i i L i
o O .
3 i ]
= Fo i P
o . ' i
i S S N I
H H H 1|'| "I H
2 i 1 1 1 1 1 1 i I‘Ir 1
b 2z 4 6 8 1 12 4 18 18 0

Timefzech

Figure 3.3.9 Desired (bold) and actual (dashed) joint velocity errors under classical PID control
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Figure 3.3.10 Control inputs applied on the joints under classical PID control
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Figure 3.3.11 Desired (bold) and actual (dashed) joint position errors under Stepanenko

control law
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Figure 3.3.12 Desired (bold) and actual (dashed) joint velocity errors under Stepanenko

control law

Input tomue applied on joir1
4|:| T

I I
i i
I I
i
L
] I

o 2 4 B s] 1 12 14 16 18 0
Timefsecd .
Input tomque applied on joim2

1] 2 4 B =] 10 12 14 16 14 1]
Timefzec)

Figure 3.3.13 Control inputs applied on the joints under Stepanenko control law
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Figure 3.3.14 Switching functions for joint 1 and joint 2 under Stepanenko control law
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CHAPTER 4

Variable Structure Control of Time-Delay Systems with
Parameter Uncertainties

4.1 Introduction

This chapter consists of two sections. Section 4.2 considers robust stabilization of
multivariable single state-delayed systems with mismatching parameter uncertainties and
matching/mismatching external disturbances. Sliding mode control design methods for both
certain and uncertain multi-input systems with several fixed state delays are considered in
section 4.3.

4.2 Robust sliding mode controller of multivariable single time-delay systems with
parameter perturbations and external disturbances

In this paragraph, robust delay-independent stabilization of multivariable single state-delayed
systems with mismatching parameter uncertainties and matching/mismatching external
disturbances are considered. To achieve this goal, two types of robust sliding mode controllers
design techniques are advanced. The first is an integral sliding mode controller design
modification to Shyu and Yan type controller design. The mismatching sliding conditions are
parametrically obtained by using Lyapunov-Razumikhin-Hale method and formulated in terms
of some matrix norm inequalities. In the second contribution, a new combined sliding mode
controller design technique for the stabilization of multivariable single state-delayed systems
with mismatching parameter perturbations are advanced by using Lyapunov-Krasovskii V-
functional method. The sliding, global stability and delay-dependent g -stability conditions are
parametrically obtained and formulated in terms of matrix inequalities. A sliding mode
controller design example for AV-8A Harrier VTOL aircraft with lateral unstable dynamic
model parameters is considered to illustrate the controller design method. Design procedures
and simulation results show that our advanced method is useful. And unstable lateral dynamics
is successfully stabilized by using combined controller

4.2.1 Brief analysis of time-delay systems

It is well known that major engineering and communication systems contain time-delay and
parameter uncertainties subject to external disturbances. The existence of time-delay effect is
frequently a source of instability. Robust stabilization of time-delay system is not as easy as
that of a delay-free system. Therefore, the problem of robust stabilization of uncertain
dynamical systems with time-delay has received considerable attention of control researchers.
From the point of view of robust control design approaches the variable structure control
concept has played most important role because of its robustness to parameter uncertainties
and external disturbances. There are a large number of such papers in literature (for example,
see Garofalo and Glielmo (1996) [1]; Ha, Rye and Durrant-Whyte (1999) [2]). Remember that,
some simple and more complicated conventional variable structure algorithms for delay-free
systems are presented by Emelyanov (1967) [3], Utkin (1974) [4], Spurgeon (1991) [5],
Edwards and Spurgeon (1998) [6], etc. However, the number of papers concerning time-delay
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systems is not large. Shyu and Yan (1993) [7] have treated an integral variable structure
controller involving equivalent control term and relay term for stabilization of time delay
systems with parameter uncertainties. Robust S -stability condition for unforced perturbed

system is derived by using Razumikhin-Hale type theorem. System matrix and its variation are
cancelled by equivalent control term while relay term is used only for generation the sliding
mode on the integral sliding surface. However, actually exact equivalent control term is
unavailable since it is dependent on unknown norm-bounded parameter uncertainties. Finally,
VSC is designed only for nominal time-delay system. Moreover, global stability condition
needs the existence of stable system matrix. In spite of this, Shyu and Yan type controller for
the considered system is designed very well.

Luo and De La Sen (1993) [8] have designed the VSC including absolute values of state and
delayed-state feedback for robust stabilization of single input-delayed systems with parameter
uncertainties. Global stability condition is derived by using matrix measure method. Such
design approach is generalized for single state and input delayed SISO and MIMO system with
parameter uncertainties and external disturbances (Luo, De La Sen and Rodellar, 1997 [9]).
Robustness properties of sliding time-delay systems are analyzed.

Koshkouei and Zinober (1996) [10] have designed a sliding mode controller including
equivalent control term and relay term for stabilization of time-delay canonical MIMO system
with matched external disturbances by using Lyapunov-Krasovskii V-functional method.
Lyapunov-Krasovskii V-functional method (Lyapunov 1992 [11], Krasovskii 1959 [12]) has
been introduced to stability analysis of variable structure systems with time-delay by Jafarov
(1980 [13], 1998 [14]).

Lyapunov-Krasovskii V-functional method has been used for stabilization of multiple state-
delayed linear systems by Nazaroff (1973) [15]. Four-term sliding mode controller design for
multiple state-delayed systems with mismatching parameter perturbations and matching
external disturbances are considered by Li and DeCarlo (2001 [16] and 2003 [17]). This
approach is applied to systems with differentiable time-varying delays (Li and DeCarlo, 2003
[17]).

Recently, several sliding mode controller design methods for uncertain systems with and
without time-delay are considered by many authors.

The behavior and design of sliding mode control system with state and input delays are
considered by Perruquetti and Barbot (2002) [18] using Lyapunov-Krasovskii functionals.
Latest research results in this area are given in survey paper by Richard, Gouaisbaut and
Perruquetti (2001) [19]. The combination of delay phenomenon with relay actuators makes the
situation much more complex. Designing a sliding controller without taking delays into
account may lead to unstable or chaotic behaviors or, at least, results in highly chattering
behaviors.

Four-term robust sliding mode controllers for matched uncertain systems with single or
multiple, constant or time-varying state delays are designed by Gouaisbaut, Dambrine, and
Richard (2002) [20] by using Lyapunov-Krasovskii functionals and Lyapunov-Razumikhin
function combined with LMI’s techniques.

Shyu and Yan (1993) [7] design approach is extended to a combined four-term sliding mode
controller design for matched/mismatched uncertain time-delay systems with a class of
nonlinear inputs by Yan (2003) [21]. Delay-dependent stability condition is derived by using
quadratic Lyapunov function already involving an unknown delay constant. Conservativeness
example with good results is presented.

An analysis and design of bounded switching feedback controller for delay free variable
structure systems with matched lumped uncertainties are presented by Choi (2004) [22].

In general, an overview of some recent advances and open problems in time-delay systems and
sliding mode control for systems with input/output delays is given in large survey paper by
Richard (2003) [23]. Some delay-dependent stability criteria for time-delay systems are
advanced by Jafarov (2003) [24].
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Another type of VSC known as the min-max controller for robust stabilization of time-varying
state-delayed dynamical systems with matching parameter uncertainties and external
disturbance has been designed by Cheres, Gutman and Palmor (1989) [25]. The global stability
and B-stability conditions are formulated in terms of differential Riccati equations by using
Razumikhin-Hale type theorem. Brief analysis of reviewed papers show that various types of
sliding mode controllers and design techniques for uncertain systems with and without time-
delay are considered. However, global asymptotical stability and sliding conditions for
stabilization of multivariable time-delay systems with parameter perturbations and external
disturbances by using a modified Shyu and Yan controller and combined sliding mode
controller are not investigated systematically. In light of above mentioned design approaches,
we will develop two types of modified simple two-terms sliding mode controllers without an
equivalent control term for perturbed and delayed systems with unstable system matrix. Some
new design techniques will be advanced.

In this section, robust delay-dependent stabilization of multivariable single state-delayed
systems with mismatching parameter uncertainties and matching/mismatching external
disturbances is considered. To achieve this goal, two types of robust sliding mode controllers
design techniques are proposed. The first contribution is an integral sliding mode controller
design modification to Shyu and Yan type controller without using an equivalent control term.
The mismatching sliding conditions are parametrically obtained by using Lyapunov-
Razumikhin-Hale method and formulated in terms of matrix norm inequalities. In the second
contribution, a new combined two-terms sliding mode controller design technique for the
stabilization of multivariable single state-delayed systems with mismatching parameter
perturbations is advanced by using Lyapunov-Krasovskii V-functional method. The controller
design approaches presented in this section are a little different from Li and DeCarlo, Shyu and
Yan types’ controller design approaches. The sliding, global stability and delay-dependent g -
stability conditions are parametrically obtained and formulated in terms of matrix inequalities.
Some mathematical analysis of sliding mode control and inequality estimations has been done
also. A sliding mode controller design example for AV-8A Harrier VTOL aircraft with lateral
unstable dynamic model parameters is considered to illustrate the controller design method.
Design procedures and simulation results show that our advanced method is useful. And
unstable lateral dynamics is successfully stabilized by using combined controller. Preliminary
results of this work are presented in (Jafarov, 2003 [24]).

This chapter is organized as follows: Section 4.2.2 contains system description and
assumptions; Integral sliding mode controller design techniques are advanced in Section 4.2.3;
Sliding mode controller design method and aircraft control design example are presented in
section 4.2.4. Finally, the conclusion is included in Section 4.2.5.

Further we shall use the following notation: R is a real-number field; x(¢) is a column vector;

x(t)" =x"x is the

A|| = Amax (4" 4) is a matrix norm; A_. (4) and A, (A4) are minimum and

maximum eigenvalues of matrix A4, respectively, Rayleigh’s principle for a positive definite
matrix P :

x” (1) is the transpose of a vector x(z); A’ is the transpose of a matrix A ;

Euclidean norm;

0 < Ay PO < %7 (O)PX(8) < A (P

4.2.2 System description and assumptions

Consider the following dynamical time-delay system with parameter uncertainties and external
disturbances described by the following state space equations

(1) = (Ay + A4y (0)) (1) + (A4 + A4 (0)) x(t — h) + Bu(t)+ Df (1), t>0 4.2.1)
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x@®)=¢@(t), —-h<tL0,

where x(f) e R" is the state measurable vector; u(f) € R™ is the control input; 4,, 4, and D are
known (7 xn )-matrices, B is a known (7 xm )-matrix of full rank; the norm-bounded matrices
Ady(o) and AA4,(c) represent the parameter uncertainties; the norm-bounded f()eR" is
unknown external disturbance; h is a known positive constant time-delay and ¢(7) is a

continuous vector-valued initial function on -2 <¢<0.

The objective of this work is to design the sliding mode controllers for robust stabilization of
MIMO time-delay systems with parameter perturbations and external disturbances.

We now make the following conventional assumptions.

Assumption 1: There exist some norm-bounded matrices H,(c), H,(oc) and E of appropriate

dimensions, such that the following matching conditions (Drazenovic, 1969 [27]; Cheres,
Gutman and Palmar, 1989 [25]) are satisfied:

Ad,(c) = BH,(c), Ad,(c)=BH,(c), D=BE (4.2.2)

Assumption 2: A4, (c),A4,(o), E(c) and f(¢) are norm-bounded:
m;tx”AAo (0)|<ay; mca;1x||AA1 (o) <a; m3x||E(a)|| <n;|p|<d;|f@)|<6; (4.2.3)

where a,,a,,7,d and @ are given positive constants.

Definition 1: A system is said to be robustly stable if the system is nominally stable as well,
and allows changing in certain specific bounds of perturbation while keeping stability.

Definition 2 (Cheres, Gutman and Palmor, 1989 [25]): The system (1) is said to have a
stability degree £ >0 if there exists a positive number ¢ >0 (depending on initial conditions)

such that the solution of (1) satisfies
|x(2,)]| € ce””™ |x(1)| forall 4,1, e R*, 1, >4, (4.2.4)

Observation 1: (Thowsen 1981 [28], Cheres, Gutman and Palmor 1989 [25], Shyu and Yan
1993 [7] etc.):
If

2(t) = e x(¢) (4.2.5)

where x(¢) is the solution of (1) and z(¢#) =0 is asymptotically stable. Then the system (1) has
a stability degree £ >0.

4.2.3 Integral sliding mode controller design

In this section integral sliding mode controller design modification to Shyu and Yan type
controller design is advanced. The mismatching sliding conditions are parametrically obtained
by using Lyapunov-Razumikhin-Hale method and formulated in terms of matrix norm
inequalities.
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4.2.3.1 Modification of Shyu and Yan type controller

To stabilize (1), let us form a new modification to Shyu and Yan type controller as follows:

u(t) =~ kxto]+ (5" PB) ||::8|| (4.2.6)

where P is a positive definite matrix, k£ is a scalar feedback gain constant and ¢ is a relay
constant to be designed.

Combined controller modification (6) consists of two parts: 1) Conventional VSC to
compensate the parameters and their uncertainties and 2) Relay term to reject the external
disturbances.

The integral sliding surface is defined as given by Shyu and Yan (1993) [7]:

s(t) = Cx(t) —jCAOx(r)dr —j CAx(r—h)dr 4.2.7)

where C is a sliding mode (m x n )-matrix of full rank that can be selected as C=B" P .

Unlike Shyu and Yan (1993) [7], Yan (2003) [21] and Choi (2004) [22] type controllers, our
modification (6) has not used the equivalent control term since it is dependent on matching
conditions and unknown parameter uncertainties. Indeed, in according to equivalent control
method (Utkin, 1977 [29]) we can differentiate s(#) with respect to the time:

$(t) = B" Pi(t) — B" PA,x(t) — B" PAx(t — h) = B" PAyx(t) + BT PAAy(0)x(t) + BT PAx(t - h)

(4.2.8)
+B" PAA (o)x(t—h)+ B" PDf (t)+ B" PBu(t)— B PA,x(t)— B" PAx(t—h)
= B" PAA4,x(t)+ B" PAA x(t — h)+ B" PDf (¢)+ B" PBu(t)
and obtain the equivalent control term from s(¢) =0 (8) as follows:
u,,(t)=—(B"PB) " B"PA4x(r)~(B"PB) ' B' PAAx(t—h)~(B"PB) B PDf () 4.2.9)

It is clear that equivalent control term cannot be synthesized explicitly as it involves the
unknown parameter uncertainties (Ryan, 1983 [30]; El-Ghezawi, Zinober and Billings, 1983

[31D).
4.2.3.2 Mismatching Sliding Conditions

After selecting the sliding surface the next step is to choose the scalar feedback gains &,5 and

design matrix P such that the stable sliding mode can exist.

Theorem 1: Suppose that Assumption 2 holds. Then the delay-independent uniformly
ultimately boundedness sliding mode can always be generated on the integral sliding surface
s(t)=0(7) defined for mismatched perturbed system (1) driven by controller (6), (7), if the

following conditions are satisfied:

k-wa,
wa,

(NGIB]IS |x@)| (4.2.10)
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5=wdl (4.2.11)
where @ =|B"P|=\/4,,,(PBB"P)

Proof: Define a positive definite Lyapunov function

Vi) = %ST(t)s ) (4.2.12)

The time-derivative of (12) along the trajectory of the system (1), (6), (7) can be calculated as
follows

V =s"(0)3(t) = s (1) B" PA4yx(t) + B" PA4x(t— h)+B" PDf (1) + B" PBu(1) |

= 5" ()BT PA4yx(1)+s" (t)B" PAAx(t - h) + " (1)B" PDf (t)— k |x(t)|s" (1)B" PB(B" PB)™' m

_ 55" (1)B' PB(B" PB)™ "28"

<o aJsl|]+ 0 a s+ 0 o] -5 -5]sto]

= —(k—o ay)|s@)||x@)|+ @ a||s@)||x - )| (5 - @ dO)|s(2)| (4.2.13)
If the second condition (11) is satisfied, then (13) becomes
V<—(k— ay)|s@)|||x)]+ @ a |s@)||x—n) (4.2.14)

The first condition (10) can be rewritten formally similar to Razunikhin-Hale type theorem
(Razumikhin, 1956 [32]; Hale, 1977 [33]) condition:

—-wa,

||x(t —h)" < q"x(l)" where =g>1 (4.2.15)

Such choice of scalar ¢ >1 is successfully used in many illustrative examples by Hale (1977)

[33], Cheres, Gutman and Palmar (1989) [25], Shyu and Yan (1993) [7], etc. Mahmoud and
Al-Muthairi (1994) [34] treat ¢ even as an adjustable parameter at the disposal of the control

designer. For this reason, we shall treat ¢ as a known scalar, which is selected in accordance

with Razumikhin-Hale type theorem. As a result, we will have freedom of changing our
controller design parameters such that the sliding conditions are satisfied.
Hence, if condition (10) is satisfied then (14) reduces to

V<0 (4.2.16)
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Therefore, we conclude that on the integral sliding surface s(t) =0 (7) a uniformly ultimately

boundedness sliding mode is generated. But, a sliding region is restricted by (15). Note that,
the usage of Razumikhin-Hale type theorem is sometimes inconvenient.

4.2.4 Sliding mode controller design method

In this section a new combined sliding mode controller design technique for the stabilization of
multivariable single state-delayed systems with mismatching parameter perturbations is
advanced. The sliding, global stability and g -stability conditions are parametrically obtained

by using Lyapunov-Krasovskii V-functional method and formulated in terms of matrix
inequalities.

4.2.4.1 Combined control law

Construct the combined sliding mode controller as follows:

u(t) = —[ k[x(0)]+ 5](13”103)‘1 ||j8|| (4.2.17)

where P is a positive definite matrix, £ is a scalar feedback gain and ¢ is a relay constant to
be designed. Note that, combined variable structure controller (17) is norm bounded in the

sense that ||u(t)||£[k||x(t)||+§]&m (BT PB)_l. If k=0, then we have Choi type of bounded

switching feedback controller (Choi, 2004): u(t) =—0 (BT PB)_l ﬁ .
s

But the sliding surface is defined in the conventional form (Young, Utkin and Ozgiiner 1999
[35], Dorling and Zinober 1988 [36] and etc.):

s(t) = B Px(1) (4.2.18)
4.2.4.2 Mismatching sliding conditions
The following theorem summarizes our mismatching sliding conditions.

Theorem 2: Suppose that Assumption 2 holds. Then the delay-independent asymptotically
stable sliding mode can always be generated on the conventional sliding surface s(¢)=0 (18)

defined for the mismatched perturbed system (1) driven by controller (17) and (18), if the
following conditions are satisfied:

PBB" PA,+ A)" PBB" P—(2ke, — u)PBB" P+2’a,l, + w*al,=—0<0 (4.2.19)
where Q in general is a non-symmetric matrix; and a)zall n 1PBB"P <0 or

-0 PBB P4,
H = <0 (4.2.20)
A"PBB"P  w’al,— uPBB'P

5> wdo (4.2.21)
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Proof: Define a positive definite Lyapunov-Krasovskii functional as follows:

V(s(t),s(t—h)) =s" (t)s(t) + p j s7(0)s(0)d6 (4.2.22)

—h

where u is a given positive scalar. Then the time derivative of (22) along the (1), (17) and (18)
can be evaluated as follows:

V=25"(0)s(t)+ us” (t)s(t)— ps” (t = h)s(t —h) = 25" (1) B" P[ Ayx(t) + Adyx(1) + A x(t — h)

+ AAx(t—h)+ Bu(t)+ Df(t)} +us” ()s(t)— us” (t—h)s(t—h)
(4.2.23
= x" (1)( PBB" P4y + 4] PBB" P)x(t)+2x" (1)PBB" PA4x(t)+2x" (t)PBB" PAx(1—h)

+2x" (I)PBBTPAAIx(t —h)— 2k||x(t)||sT (f)BTPB(BTPB)_l ":zg;"

+25" (1)B" PDf (1)~ 255 (1)B" PB(B"PB) ﬁ
S

+ ux” (t)PBBT Px(t) - ux™ (t — h)PBB” Px(t - h)
Since
2x” (1)PBB” PAAyx(t) < 2% ayx" (1)x(1) (4.2.24)
2x" (t)PBB" PAAx(t — h) < 2% a,||x(2)||[x(t - 1) (4.2.25)
25" (t)B" PDf (t) < 20d0||s(t)| (4.2.26)
Then
V <x"(1)( PBB" P4, + A) PBB' P+2w’a,l, + uPBB" P)x(1)+ 20’a, |x(0)||x(t=h)| ~ (4.2.27)
+2x" (1)PBB" PAx(t — h) = 2k|x(2)||s(1)|| +2e0d 0||s(2)|| 26 |}s(1)|| - pex" (t — h) PBB” Px(t — )
Since
[s@)]|=|B" Px(0)| <|[B" P |x(0)] = @x()] (4.2.28)

And

0]z 5] = a1 s

b
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o = > (4.2.29)
Hence
—2k||x(t)||||s(t)|| <2ko, ||s(t)||2 = —2ka)1sT (H)s(t) (4.2.30)

Then

V <x" ()| PBB" P4, + A} PBB" P+2w’a,l, + uPBB' P—2ke, PBB P | x(t) + 20 a[x(1)| (¢ — )|
+2x" (t)PBB" PAx(t —h)— pux” (t = h)PBB" Px(t — h) —2(5 — xd0)|s(1)| (4.2.31)
Since 2ab<a*+b?

where a and b are some scalars, then

20%a, |x(0)||x(t = h)| < @ ayx" ()x(2) + @ ayx" (¢ = h)x(t — ) (4.2.32)
Then (31) can be arranged as a full quadratic form:

V < x (0)|PBB” P4, + AT PBB" P+ 20 ayl, + w’a,1, + uPBB" P ke, PBB" Px(1)

+2x" (1)PBB" PAx(t—h)+x" (t = h)\(@ a1, — uPBB" P)x(t —h) —2(S —d O)||s(1)|
T T
:[ x(®) } [ 0 PR P, }{ 0 } ~2(6 - ) () (4.233)

x(t=h)] | 4,"PBB"P w?a,I,-uPBB" P | x(t=h)

If conditions (19), (20), (21) are satisfied then (33) reduces to:

t r t
= {x(t(_)h)} " {xé(_)h)} ~2(0-wdd)|s) (4.2.34)

< —2(5— cod@)"s(t)" <0 since A

‘min

(H)=0

Therefore, we conclude that the robustly asymptotically stable sliding mode can always be
generated on the sliding surface s(#) =0 (18). Theorem 2 is proved.

4.2.4.3 Global stability conditions

We now examine the robust global asymptotical stability with respect to the state coordinates
x(¢) of perturbed time-delay system (1) driven by variable structure controller (17), (18). The

following theorem summarizes our global stability conditions, which are obtained by using
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Lyapunov-Krasovskii V-functional method and formulated in terms of some matrix
inequalities.

Theorem 3: Suppose that Assumption 1 (last equation) holds. Then the time-delay system (1)
with mismatched parameter uncertainties and matched external disturbances driven by variable
structure controller (17), (18) is globally delay-independent asymptotically stable, if the
following conditions are satisfied:

PA, + A P—2kay A

(B"PBY"'PBB"P +2ayA,, (P)I, +aA,. (P),+uR=-0<0 (4.2.35)
where Q in general is a non-symmetric matrix and

A (P),—uR<0  or

-0 PA .
= <0 (4.2.36)
Al p alj‘max (P)In —/JR
S, (B” PB) > 110 (4.2.37)
Proof: Choose a Lyapunov-Krasovskii functional candidate as follows:
t
V(x(t),x(t—h)) = x" (£)Px(t) + u f x" (O)Rx(0)d6 (4.2.38)
~h

where P and R are some positive definite matrices, x is a positive scalar. Then, the time

derivative of (38) along the trajectory of system (1), (17), (18) can be evaluated similar to the
proof of Theorem 2 as follows:

[ xo T[-0 P4, x(0)
Vg[x(t—h)} {AITP ad (P, - M}L(r— h)} = 2%in (P) =100 (4.2.39)

If conditions (35), (36), (37) are satisfied then (39) reduces to:

o 1 [ >
< _Lc()zf - h)} H LC();_ h)} B 2[5)“mm (P)= '76} "S(t)" (4.2.40)
< 2[4 (P)-160][s(0)]| <O since A, (H)=0

Therefore, we conclude that perturbed closed-loop system (1), (17), (18) with mismatched
parameter uncertainties and matched external disturbances is globally asymptotically stable
with respect to the state coordinates x(¢). Theorem 3 is proved.

4.2.4.4 B-stability conditions
[ -stability conditions are formulated in the following corollary.

Corollary 1: Suppose that Assumption 1 (last equation) and the conditions of Theorem 3 are
met. Then the time-delay system (1) with mismatched parameter uncertainties and matched
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external disturbances driven by variable structure controller (17), (18) is globally
asymptotically delay-dependent stable with the stability degree £>0, if the following

conditions are satisfied:

P(4y+ BI,)+(Ay+ B1,)" P —2ke A . (B"PB)" PBB" P

(4.2.41)
+2ay Apax (P), + @) Ao (P), + R =-0 <0
where Q in general is a non-symmetric matrix, and
et Ahax (P)1, — HR <0 or
Bh
- e PA
= Q ! <0 (4.2.42)
e"ATP  eal. (P)I,—uR
SApin (B PB) > 176 (4.2.43)

Proof: Utilize (5) to transform (1), (17) and (18) into following equations:

2(t) = (A4, + pL,)z(t)+ et Az(t—h)+A4,(o)z(t)+ e’ hAAl (o)z(t—h)+ Bu(t)+ Dj_”(t) (4.2.44)
where

W ()=c u(t) =~ " [k|xo]+ 5](B"PB) ﬁ = [ Kz(0]+ 5¢” |(B" PB) " % (4.2.45)
and
s =e” s()= BT Pe” x(1)= BT Pz(1) (4.2.46)

respectively.

Now, choose a Lyapunov-Krasovskii functional as

V(z(t), 2(t— b)) = 27 ()Pz(t) + j " (O)Rz(0)do (4.2.47)

where P and R are positive definite matrices, 4 is a positive scalar. Then, the time derivative

of (47) along the trajectory of transformed system (44), (45), (46) can be evaluated similar to
the proof of Theorem 3 as follows:

j 20 T -0 e” P4, 2(t) . i
VSL(Z"?)} L’”’AfP e”"alﬂmx(P)ln—uR]L(z-hJ 2| 84y, (B PB) =10 [ (1] (4.2:48)
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If conditions (41), (42), (43) are satisfied then (48) reduces to:

. o T (¢ o B o )
V{z(j—)hj " Lé—)m}‘z[&mm(’? PBY =8 |5 <-2[oA,,(B"PB)" 58 ][s(0)]

since

A

min

(H)=0 (4.2.49)

Therefore, we conclude that perturbed transformed closed-loop system (44), (45), (46) with
mismatched parameter uncertainties and matched external disturbances is globally
asymptotically delay-dependent f -stable with respect to the new state coordinates z(¢).

Maximum upper bound # of delay size can be determined from condition (42). Corollary 1 is
proved.

4.2.5 Example: Aircraft control design

Now, consider a numerical design example to illustrate the controller design procedure
described in section 4.2.4 for lateral control of AV-8A Harrier VTOL aircraft in a hover mode.

The linearized unstable lateral dynamic model with nominal parameters for this aircraft was
taken from (Calise and Kramer, 1984 [37]):

2(t) = Ayx(t) + Bu(?)

y(1) = Cx(7)

where, state vector is represented by x” = [y/ pgour p],
v is the Euler yaw attitude perturbation (rad),

@ is the Euler roll attitude perturbation (rad),

v is the velocity perturbation along body y-axis (m/s),
r is the body-axis yaw rate (rad/s),
p is the body-axis roll rate (rad/s),

the control inputs are u” =[5, 7 Spup |,
O, ,r is the lateral stick perturbation (cm),
O rup 1s the rudder pedal perturbation (cm),

and the system, control and output matrices are given:

0 0 0 10 ] 0 0
00 0 0 1 0 0
4=|0 98-0.042 0 0 [, B=| 0 -027
0 0 -0.007 -0.06 -0.075 0.0055  0.085
0 0 -0.039 0.11 -0.260) 10177 -0.033 |

For the simulation of system (1), (17) the parameter perturbations are assumed as follows:
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A4, =0.2sin(1)4,, Ad, =0.2cos(t)4,, 4 =034,

Aircraft model has really some small time-delay because of pilot’s (or commands) effective
time delay (Blakelock, 1991 [38]) and transports delays of aircraft mechanical and hydraulic
servomechanisms. For simulation we select 7 = 0.24s .

The design procedure of sliding mode controller (17) can be fulfilled by the following steps:

e Select a matrix £ such that matching condition for external disturbance holds:

0 0 ]
0 0
00 0

D=BE=| 0 027 | -~ °
0.0055 0.085 '

| 0.177 -0.033 |

Find the eigenvalues of matrix A4,

Eig(4, )= 0; 0.2715£0.6239i; - 0.8253;-0.0798

A, is an unstable matrix.

e Solve matrix inequality (19) by using special programming in Matlab.

clear
clc
a0=1.96;
al=0.588;

AO=[0 0 0 1 0;0 0 0 0 1;0 9.8 -0-042 0 O;

0 0 -0.007 -0.06 -0.075;0 0 -0.039 0.11 -0.260];
B=[0 0;0 0;0 -0.27;0.0055 0.085;0.177 -0.033];

k=2.5;
mu=0.5;

=[1 0000;01000;00100;00010;0 00 O 1];

In=Q;

S O O O O

S O O O O

0
0
-0.027
0.0085
-0.0033

0

0

0
0.0011
0.0354

X=[0.1667 0 O O 0;0 0.0942 -0.0470 0 0;0 -0.0470 0.9265 0 O;

000 0.2083 0;0 00 0 0.1471];
for 1=1:5
for j=1:5
it X(1,1)==Xg,1)
P, 1)=X(1.1);
else
P(.1=L 1
end
end
end

if det(P)>0
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P_det=det(P)
else det(P)<0
“change the elements of X to make the determinant of X positive
end
P_line=P*B*B"*P
lambda=eig(P_line)
max_eig=max(lambda)
omega=sqrt(max_eig)
omegal=1/omega
MI=P_l1i1ne*A0+A0"*P_line-(2*k*omegal-
mu)*P_line+2*omega”2*a0*In+omega”™2*al*In+Q
MI_det=det(MI)

it det(Ml) <=0

MI_det=det(MI)
else

"change the elements of X to make the inequality satisfied”
end

0.1667  0.0000 -0.0000 0.0000 -0.0000 |

0.0000 0.0942 -0.0470 0.0000 -0.0000

P=|-0.0000 -0.0470 0.9265 -0.0000 0.0000
0.0000  0.0000 -0.0000 0.2083 -0.0000
-0.0000 -0.0000 0.0000 -0.0000 0.1471

eig(P) = 0.0915, 0.1471, 0.1667, 0.2083, 0.9292

A

. (P)=0.0915, 4, (P)=0.9292
[ 0.0000 0.0000 -0.0000 0.0000 -0.0000]
0.0000  0.0002 -0.0032 0.0002 -0.0001
P=PBB"P=[-0.0000 -0.0032 0.0626 -0.0044 0.0012

0.0000  0.0002 -0.0044 0.0003 -0.0001
-0.0000 -0.0001 ~ 0.0012 -0.0001  0.0007 |

eig(P) = 0.0000, 0.0631, 0.0007, 0.0000, 0.0000

which is a positive semi-definite matrix, A, (P)=0.0631, ©»=+/0.0631=0.2511,
®, =3.9817.
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Choose k=2.5
Matrix inequality (19) hold

[1.2843 0 0 0 0

0 1.2190 0.6750 -0.0478 0.0133
0 0.6750 0.0645 0.0865 -0.0268
0 -0.0478 0.0865 1.2782 0.0014
0 0.0133 -0.0268 0.0014 1.2703 |

MI =

because this matrix is negative definite and det(M/)=-0.8126

e (alculate the following matrix norm from (3):

a, = max|[Ad, | =[0.2* 4| =1.96
a, = max |A4, | =]0.06* 4, = 0.588
n=0.2236, d =0.0639, 6=0.2.

b

e Calculate BT PB ={

0.0046 -0.0008
-0.0008  0.0692

217.8293 2.51
(BTPB)I{ 7.8293 583}

2.5183 14.4800

Bp— 0 0 0 0.0011 0.0260
1 0 0.0127 -0.2502 0.0177 -0.0049 |

eig(B" PB) =0.0046,0.0692 , which is positive definite matrix with 4_, =0.0692.

e (Calculate matrix inequality (20)
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! 0 0 0 0 0 0 0 0 0 ]

0 -1 0 0 0 0 -0.0093 0.0000 -0.0000 0.0000

0 0 -1 0 0 0 0.1840 -0.0008 0.0001 -0.0009

0 0 0 -1 0 0 -0.0130 0.0001 -0.0000 0.0001

e 0 0 0 0 -1 0 0.0036 -0.0000 0.0000 -0.0001
0 0 0 0 0 0.0371 0 0 0 0

0 -0.0093 0.1840 -0.0130 0.0036 0 0.0370 0.0016 -0.0001 0.0000
0 0.0000 -0.0008 0.0001 -0.0000 0 0.0016 0.0058 0.0022 -0.0006
0 -0.0000 0.0001 -0.0000 0.0000 0 -0.0001 0.0022 0.0369 0.0000
0 0.0000 -0.0009 0.0001 -0.0001 0 0.0000 -0.0006 0.0000 0.0367 |

which is negative definite and det(H)= -2.0144e-008

e Seclect § from (21) 6 >20.0032.

Block diagram of system (1), (17), (18) with VTOL aircraft parameters is shown in Figure
4.2.1. Simulation results using MATLAB-SIMULINK are shown in Figure 4.2.2, 4.2.3, 4.2.4.
As seen, unstable lateral dynamics are successfully stabilized by using combined sliding mode
controller. The control performances are satisfactory. Time responses by designed controller
are compared with those by Choi type controller. The structure of Choi type controller is
similar to that of combined controller. Simulation results are presented in Figure 4.2.5, 4.2.6,
4.2.7. As seen, Choi type controller, in general, can stabilize unstable lateral dynamics model.
However, Choi type controller has a steady state error. Thus, design procedures and simulation
results show that our advanced method is useful. And unstable lateral dynamics is successfully
stabilized by using combined controller. Not that, as seen from Fig. 4.2.4 designed controller
has some chattering effect, which is undesirable in practical implementations. In order to
reduce the control chattering, the discontinuous switching function in (17) can be replaced by a
well known continuous type saturation functions (Slotine and Li, 1991 [39]), (Esfendiari and
Khalil, 1991 [40]), (Jafarov and Tasaltin, 2000 [41] and 2001 [42]) and (Mahmoud and Al-
Muthairi, 1994 [34]).

4.2.6 Conclusions

Robust delay-dependent stabilization of multivariable single state-delayed systems with
mismatching parameter uncertainties and matching/mismatching external disturbances is
considered. To achieve this goal, two types of sliding mode controllers design techniques are
advanced. The first is an integral sliding mode controller design modification to Shyu and Yan
type controller design. The mismatching sliding conditions are parametrically obtained by
using Lyapunov-Razumikhin-Hale method and formulated in terms of some matrix norm
inequalities. In second contribution, a new combined sliding mode controller design technique
for the stabilization of multivariable single state-delayed systems with mismatching parameter
perturbations is advanced. The delay-independent sliding, global stability and delay-dependent
B -stability conditions are parametrically obtained by using Lyapunov-Krasovskii V-functional
method and formulated in terms of some matrix inequalities. A sliding mode controller design
example for AV-8A Harrier VTOL aircraft with lateral unstable dynamic model parameters is
considered to illustrate the controller design method. Design procedures and simulation results
show that our advanced method is useful. And unstable lateral dynamics is successfully
stabilized by using combined controller. The results of section 4.2 is published by Jafarov
(2005) [43].
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4.3 New Sliding Mode Controllers Design for Multiple Time-Delay Systems

4.3.1 Introduction

In this paragraph, the problem of sliding mode controller design methods for both certain and
uncertain multi-input systems with several fixed state delays is addressed. Two types of sliding
mode controllers are proposed: 1) Simple sliding mode controller is designed for the
stabilization of certain time-delay systems and 2) Combined sliding mode controller is designed
for the stabilization of uncertain time-delay systems with parameter perturbations and external
disturbances. Delay-independent sufficient conditions are given for the existence of a sliding
mode and the robust asymptotic stability of the closed-loop systems by using Lyapunov-
Krasovskii functional method combined with matrix inequality techniques. Some new matrix
inequalities are evaluated for mathematical analysis of time-delay systems. Feasibility of hard
solvable matrix inequalities by using modified algebraic Riccati equations is discussed.

Two numerical examples with simulation results are given to illustrate the usefulness of the
proposed design methods.

4.3.2 Brief analysis of existing controllers

It is well known that many engineering control systems such as conventional oil-chemical
industrial processes, nuclear reactors, long transmission lines in pneumatic, hydraulic and
rolling mill systems, flexible joint robotic manipulators and machine-tool systems, jet engine
and automobile control, human-autopilot systems, ground controlled satellite and
communication systems, space autopilot and missile-guidance systems, etc. contain some time-
delay effects, model uncertainties and external disturbances. These processes and plants can be
modeled by some uncertain dynamical systems with state and input delays. The existence of
time-delay effects is frequently a source of instability and it degrades the control performances.
The stabilization of systems with time-delay is not easier than that of systems without time-
delay. Therefore, the problem of robust stabilization of uncertain time-delay systems by various
types of controllers such as PID controller, Smith predictor, and time-delay controller, recently,
sliding mode controllers have received considerable attention of researchers. However, in
contrast to variable structure systems without time-delay, there is no large number of papers
concerning sliding mode control of time-delay systems. As known from Utkin (1977) [29] and
Sabanovic, Fridman and Spurgeon (2004) [2] etc. sliding mode control has several useful
advantages, e.g. fast response, good transient performance, and robustness to the plant
parameter variations and external disturbances. For this reason, now, sliding mode control is
considered as an efficient tool to design of robust controllers for stabilization of complex
systems with parameter perturbations and external disturbances.

A brief review of the first attempts in this area is given by Jafarov (1998) [14]. Shyu and Yan
(1993) [7] have established a new sufficient condition to guarantee the robust stability and £ -

stability for uncertain systems with single time-delay. By these conditions a variable structure
controller is designed to stabilize time-delay systems with plant uncertainties. However, a
variable structural controller is designed only for nominal time-delay system. The sliding
surface is defined in the linear switching functional form, practice implementation of which is
not easy. Koshkoei and Zinober (1996) [10] have successfully designed a new sliding mode
controller for MIMO canonical controllable time-delay systems with matched parameter
uncertainties and external disturbances by using Lyapunov-Krasovskii functional. A limitation
of this design is that the matching conditions cannot always be hold especially for external
disturbances.
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Robust stabilization of time-delay systems with uncertainties by using sliding mode control has
been considered by Luo, De La Sen and Rodellar (1997) [9]. However, disadvantage of this
design approach is that, a variable structure controller is not simple. Moreover, equivalent
control term depends on unavailable external disturbances. Sliding mode controllers for
canonical single-input (Jafarov, 1998 [14]) and multi-input (Jafarov, 1990 [45]) time-delay
systems by using Lyapunov-Krasovskii functional have been designed by Jafarov (1998) [14]
and (1990) [45]. Variable structure controllers for time-delay systems have been considered by
Zheng, Cheng and Gao (1993) [46]. Canonical delay-free form transformed variable structure
system is designed by Hu, Basker and Crisalle (1998) [47].

One type of sliding mode control with memory for certain multivariable systems with several
state delays is considered by Jafarov (2000) [48]. Li and DeCarlo (2001) [16] have proposed a
new robust memoryless sliding mode control design method for a class of uncertain time-delay
systems with multiple fixed state delays. The system has both structured matched (possible
unmatched) parameter uncertainties and norm-bounded matched disturbances. A new combined
control law is proposed. This control law consists of four terms: 1) Memoryless linear control
for the stabilization of nominal system without time-delay; 2) The equivalent control including
all state delays for the stabilization of nominal systems with time-delay. 3) Continuous control
component depending on some function of switching variable multiplicated by the sum of state
and state delays norms for the overcome the parameter uncertainties and 4) Discontinuous
quasi-relay type control plus constant term for rejection of disturbance which used to drive
system state trajectories on to the defined sliding manifold. Asymptotic stability of time-delay
systems restricted to the sliding surface is considered by using the Lyapunov-Krasovskii
functional combined by LMI’s techniques. Reaching condition of the time-delay system driven
by combined controller also is derived by using sliding mode control theory. A numerical
example with simulation results illustrates the effectiveness of the design methodology.
However, disadvantage of such design is that, a combined variable structure controller has four
terms and their practical implementation is not simple. Moreover, sliding and stability
conditions are formulated in terms of unknown variables, which may be lead to uniformly
ultimately boundedness. Advanced results of robust sliding mode control of uncertain time-
delay systems are successfully presented by Li and DeCarlo (2003) [17]. Some new theorems
for solvability of matrix inequalities are given.

The behavior and design of sliding mode control systems with state and input delays are
considered by Perruquetti and Barbot (2002) [18] using Lyapunov-Krasovskii functional.

Four-term robust sliding mode controllers for matched uncertain systems with single or
multiple, constant or time varying state delays are designed by Gouaisbaut, Dambrine and
Richard (2002) [20] by using Lyapunov-Krasovskii functionals and Lyapunov-Razumikhin
function combined with LMI’s techniques.

A robust sliding mode control of single state delayed uncertain systems with parameter
perturbations and external disturbances is designed by Jafarov (2003) [49].

In general, an overview of some recent advances and open problems in time-delay systems and
sliding mode control for systems with input/output delays is given in large survey paper by
Richard (2003) [23]. Some delay-dependent stability criteria for time-delay systems are
advanced by Jafarov (2003) [17]. Recent advances in time-delay systems using Lyapunov-
Krasovskii functionals (Krasovski, 1959 [18]) is given by Niculescu and Gu (2004) [50], and
Gu, Kharitonov and Chen (2003) [51].

Several new fresh articles are presented in special issue edited by Ulsoy, Misawa and Utkin
(2000) [52] which address important theoretical problems in variable structure systems. Topics
that are covered discrete-time systems, infinite dimensional system, optimization, estimation
and alternative forms of VSS and corresponding design techniques. These techniques were
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successfully applied in practice such as mobile robots and mechanical manipulators,
automotive, aircraft, missile and chemical processes. This issue [52] is a great reference for
further analysis of sliding mode control. Steady modes in relay type control systems with time-
delay and periodic disturbances are considered by Fridman, E., Fridman L. and Shustin (2000)
[53].

In this section, the problem of sliding mode controller design methods for both certain and
uncertain multi-input systems with several fixed state delays is addressed. Two types of sliding
mode controllers are proposed: 1) Simple sliding mode controller is designed for the
stabilization of certain time-delay systems and 2) Combined sliding mode controller is designed
for the stabilization of uncertain time-delay systems with parameter perturbations and external
disturbances. Delay-independent sufficient conditions are given for the existence of a sliding
mode and the robust asymptotic stability of the closed-loop systems by using Lyapunov-
Krasovskii functional method combined with matrix inequality techniques. Some new matrix
inequalities are evaluated for mathematical analysis of time-delay systems. Feasibility of hard
solvable matrix inequalities by using modified algebraic Riccati equations is discussed.

Two numerical examples with simulation results are given to illustrate the usefulness of the
proposed design methods.

4.3.3 Simple sliding mode control of certain time-delay systems

First let us consider a memoryless sliding mode control design method for the stabilization of
certain multivariable time-delay system. Multi-input system with multiple state delays can be
described by the following equations:

X(t) = Ayx(t) + Ax(t =)+ ..+ Ayx(t—hy)+ Bu(f), t>0
x()=g(t), —h<t<0 4.3.1)

where x(¢) € R" is the measurable state vector, u(f) € R" is the control input, 4,,4,,..,4, and

B are known constant matrices of appropriate dimensions, with B of full rank,
0<h <h,<..<hy<h are the constant time- delays, ¢(¢) is a continuous vector—valued initial

function in -h <t <0.

Taking known advantages of sliding mode, we want to design a simple suitable sliding mode
controller for stabilization of certain time-delay system (4.3.1).

4.3.3.1 Control law and sliding conditions

To achieve this goal, we form the following type of variable structure controller:

k|x@| - 0 0
u(t)y=—(B"PBY"| : 0l (4.3.2)
0 -k, X))
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where (B'PB)'K is a feedback gain matrix, K is a diagonal design matrix with positive

elements %,,...,k,, to be selected, x(t)" =/x" (t)x(¢) is the Euclidean norm, T is the transpose

of vector or matrix.

In according to Young, Utkin and Ozgiiner (1999) [23] let us define a sliding surface as
follows:

s(t) = B" Px(t) (4.3.3)

where P is a positive definite symmetric matrix to be selected. The switching gain design
matrix C = B’ Pis a full rank and CB = B PB is nonsingular because B has rank m and P is a
symmetric positive definite matrix. Note that, B” PB is a symmetric positive definite (m x m) -
matrix.

After selecting a simple sliding mode controller (4.3.2) and defining the sliding surface (4.3.3)
the next step is to choose the design parameters k,...,k, and P such that on the sliding

EEPR AT

manifold s(z) =0 can always be generated a stable sliding mode and then closed-loop time-
delay system is globally asymptotically stable.

Lemma 1: Given the time-delay system (4.3.1) driven by variable structure controller (4.3.2).
Then a stable sliding mode can always be generated on the sliding surface s(t)=0 (4.3.3), if

the following conditions are satisfied:

Phy+ A4 P+(f +--+ By | P-2kP=-0<0
(4.3.4)

-0 PA, -+ PA,
= _
g=|MP AP0 (4.3.5)

where f3,,..., 3, >0 are given constants, P=PBB’ P is a positive semi-definite (1 n) matrix

andw=1/4,..(P).

Proof: In order to organize a full quadratic form of variables s(z) and s(@) let us define a
Lyapunov-Krasovskii functional candidate as:

V[s(0),5(0)]= ST(I)S(I)+§: B j sT(0)s(0)d6 (4.3.6)
=l Ip

where f£,,..., By >0 are given constants.

The time derivative of (4.3.6) along the state trajectories of system (4.3.1), (4.3.2), (4.3.3) can
be calculated as follows:
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V=s" Os@)+5" @)s(@)+ Bs" (O)s@) = Bs" (t —h)s(t —h) +...+ Bys" (O)s(t) = Bys” (t—hy)s(t—hy)
= 25T (0)B" P Ayx(1)+ Ax(t =)+ ...+ Ay x(t — hy) + Bu(t) |+ (B, +...+ Sy )s” (1)s(2)
_ﬂIST(t_h'l)S(t_hl)_"'_ﬁNST(t_hN)S(t_hN)

= x ()| PBB" PAy + A,PBB" P+ (3, +...+ ) PBB" P | x(t)~2s" (1)B" PB(B" PB) K |x(1)| )

sl
+2x7 (1)PBBT PAX(t — b)) + ...+ 2x" ({)PBBT PAy x(t — h,)
(4.3.7)
—Bx"(t—h)PBBT Px(t—h)—...— Byx" (t—hy)PBB" Px(t—hy)
where PBB"P =P >0 is a positive semi-definite (nx ) matrix. Generally, A_. (PBB"P)=0.
Since
25" (t)B" PB(B" PB) 'K |x(z)| IISEt;II 2|l 0)|2 ﬁ”Kﬁ O < o, x5 (4.3.8)
Then in according to Schwartz inequality
[s@)]|=|B” Px)| <||B” P|x(0)] = \/ A (PBBT P) |x(0)| (4.3.9)
or
EOE L5 (43.10)
\JAmax(PBB" P)
Hence
|x@|s@)] = @|s@)||s@)]| = co"s(t)"z = ws” (t)s(f) (4.3.11)
where @ = l/ Amax (PBBT P) and
Ko [X O[5 € 2Ky @57 (0)5(8) = =2k, ox” (¢)PBB” Px(t) (4.3.12)

where k. =k .
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Therefore, (4.3.7) becomes:

V< () Py + A P+(B,+..4 By) P |3(0) = 2keox” (1) Px(0)
+2xT () PAX(t — ) +...+2x" (1) PAyx(t —hy,)
= Bx" (=) Px(t~hy)~..= Byx" (t=hy)Px(t—hy) (4.3.13)
=xT(z)[i>A0 + AP+ (S +..+ ﬂN)P-zkaﬂx(t)
+2x7 (6)PAX(— Iy )+ ...+ 25T (6)PAx(t—hy)

—Bx" (t=h)Px(t—h)—...— Byx" (t—hy)Px(t—hy)

If there exists a constant & >0 and a positive semi-definite symmetric matrix P such that linear

for P matrix inequality (4.3.4) and condition (4.3.5) are satisfied, then rearranging (4.3.13) we
obtain:

V <—x"(0)0x(t) + 2x" () PAX(t — ) + ...+ 2xT (£)PAyx(t — hy ) — Bix” (t—h)Px(t—hy)

— o= By X" (t = hy )Px(t - hy)

xt)y  1|-0  PA - PAL|[x(0)
x(t=h) | |A'P -BP - 0

ME=R) T () <0 (4.3.14)

x(t—hy) ANTF 0 -ﬂNF x(t—hy)

where 2" () =[x" (1) X (t=hy)..x" (t=hy)]".

Therefore, we conclude that a stable sliding mode is generated on the switching surface
s(t)=0 (4.3.3). Lemma 1 is proved.

We now can analyze the global asymptotic stability of time-delay system (4.3.1), (4.3.2),
(4.3.3) with respect to state coordinates in large.
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4.3.3.2 Stabilization of closed-loop system
The following theorem summarizes our stability results.

Theorem 4: Suppose that the conditions (4.3.4) and (4.3.5) of Lemma 1 hold. Then the time-
delay system (4.3.1) driven by sliding mode controller (4.3.2), (4.3.3) is globally asymptotically
stable, if the following conditions are satisfied:

ATP+PA+R +...+ R, —2koA,, (B"PB) PBB"P=-0<0 (4.3.15)
-0 PA, - PA,
AP R - 0

H=|"" o <0 (4.3.16)

where P and R,,...,R, are some positive definite symmetric matrices to be selected.

Proof: Choose a Lyapunov-Krasovskii functional candidate as follows:

V =xT(t)Px(t) + i B j T (O)R.5(0)d0 (4.3.17)

=l p,

The time-derivative of (4.3.17) along the state trajectory of system (4.3.1), (4.3.2), (4.3.3) is
given by

V = xT (1)(AL P+ PAy)x(t) + 2x" (6) PAX(t — by ) + ...+ 2xT () PA x(t— D)

+x" ORx(t)—x" (t—h)Rx(t—h)+..+ x" ()R x(¢)—x" (t=hy)Ryx(t—hy,) (4.3.18)

-2 ||x(t)||xT (t)PB(BTPB)_lK S(Z)

s
Since
=2|x(0)|x" (1)PB(B" PB)™" K"iE_g" = 2|x(0)| s’ (t)(B”TS};ﬁﬁ‘1 Ks(t)
Jsof
P 8P RO = 57 PE Ol @319

where k

min

=k and (4.3.12) holds.
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Therefore

V <x"(0)] 4 P+ PAy+R +..+ Ry -2k}

win(B" PB)” PBB" P | x(1)
+2xT () PAX(t —h) +...+ 2xT (1) PAyx(t — hy) (4.3.20)
—x"(t=h)Rx(t—h)—...—x" (t —hy)Ryx(t—hy)

If there exist a constant k > 0 and some positive definite symmetric matrices P, R, ,..., R, such
that a quadratic for P matrix inequality (4.3.15) is satisfied, then

X0 Trp  pa, - pA ] X
=h) || rp o o | KR
V<| x(t—h) ! '

x(t—h) | =z" (t)Hz(t) < 0 (4.3.21)

RiU _‘hN )| _x(t_.hzv)_

In view of (4.3.21), if condition (4.3.16) is satisfied then (4.3.21) reduces to ¥ <0 . Therefore,
we conclude that time-delay system (4.3.1), (4.3.2), (4.3.3) is globally asymptotically stable
with respect to state coordinates. The Theorem 4 is proved. Thus, design of variable structure
controller for stabilization of closed-loop multivariable system with several delays is
completed. Derived sliding and stability conditions are formulated in terms of some matrix
inequalities. Note that linear for P matrix inequality (4.3.4) and quadratic for P matrix
inequality (4.3.15) are similar to conventional linear and quadratic matrix equations and
inequalities considered in [15], [17] and [54]-[63]. Therefore, in general a positive semi-definite
solution to (4.3.4) and (4.3.15) can be calculated by using known techniques after reducing to
standard quadratic Riccati equations. For example, letting £, + 5, +...+ By =1 and 2kw =1

condition (4.3.4) is reduced to standard Lyapunov matrix equation PA, + A, P = -Q .
(B"PB)" =1
and R +R,+..+Ry +0=0, >0, then condition (4.3.15) reduces to conventional algebraic

Quadratic for P matrix inequality (4.3.15) can be simplified as follows: Let 2kwA,

min

Riccati equation:
Al P+PA,—~PBB"P+(Q, =0,

then k can be found as:

1
(B"PB)

k=
204

min

As pointed by Cao and Sun [59] H has its own quadratic structure # = TMT" where
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I —PAR" -+ —PAR; © 0 - 0

Since T is a nonsingular and LMI M, <0, then H <0. Therefore, conditions (4.3.15) and
(4.3.16) are feasible.

4.3.3.3 Reduced design

Note that, the stability condition (4.3.16) can be reduced, if we assume in (4.3.17)
R =R,=..Ry =R=R" >0 asin [15], [56], and then the (4.3.16) reduces to

-0 PA, - PA,
AITP -R .- 0

H = . L .1<0 (4.3.22)
ANT P 0 -R

where

AT P+ P4, + NR—2kok,, (B' PB) ' PBB"P=-Q <0 (4.3.23)

Let us calculate the Schur compliments of (4.3.22):

-0, P4,
For N=1, H, = TP —R <0 (4.3.24)
1 -
Where
AOTP+PAO +R-2kwZ_, (B"PB)'PBB"P= -0, <0 (4.3.25)
Then the Schur compliment for H,
H =-Q +PAR'A'P<0 (4.3.26)
—-H, PA
For N=2, H, =[ATfl) Rl < (4.3.27)
1 —
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For which

AP+ PA,+2R-2kwA , (B"PB)' PBB"P=0, <0 (4.3.28)
and H =-0,+PAR'A'P<0 (4.3.29)

Then the Schur compliment for H,

H,=H,+PAR'A'P<0 (4.3.30)
or H,=-0,+PAR"'A/ P+PAR"'4]P<0 (4.3.31)
and for the general case the Schur complement is given by

H=-Q+PAR'A'P+..+ PA,R"4;,P<0 (4.3.32)

Thus, the stability conditions are reduced. A positive semi-definite solution to (4.3.32) can be
determined by using known algorithms [15], [54]-[63] after reducing to standard forms.

4.3.3.4 Example 1

Let us consider a numerical example illustrating the design procedures for time-delay system
(4.3.1), (4.3.2), (4.3.3) with parameters:

[-107], o1 011, o2 0], [10
w=los V4= oo’ w55 0
h =01, h,=02

The design procedure can be performed by the following steps:

o Calculate the eigenvalues of 4, :

A4 =11, A, ==1.1, A, is an unstable matrix
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e Solve the quadratic for P matrix equation (4.3.15) or (4.3.23) by using Matlab programming;:

A0=[-10.7;0.3 1];

A1=[0.1 0.1;0 0.2];

A2=[0.2 0;0 0.1];

B=[10;0 17;

R1=[0.1 0;0 0.1];

R2=R1

Q=[1 00 1];

P=[10.6;0.6 1]

k=2

Pline=P*B*B"*P

lambdal=min(eig(inv(B"*P*B)))
w=1/sqrt(max(eig(Pline)))
MI=A0"*P+P*A0+R1+R2-2*k*w*lambdal *Pline+Q
H=[-Q P*A1 P*A2; A1'*P -R1 zeros(2:2);A2'*P zeros(2:2) -R2]
H_det=det(H)

MI_det=det(MI)

where
1 06 1 06 1 06
P= ; B'P= , B'PB=
{0.6 1}’ {0.6 1}’ BB {0.6 1}
1.5625 —0.9375
T -1 _
(B°FB) ‘{—0.9375 1.5625}

The determinant is 1.5625, and the eigenvalues are A, =2.5000 and A4, = 0.6250.

_ 136 1.2
P:(PBBTP):{lz 136}

The determinant is 0.4096, and the eigenvaluesare A =1.56 and A, =1.06.

©=0625. =02 andﬂ2=0.4;k=2;Q:L1) ﬂ.

e Check whether a solution of matrix inequality (4.3.15) hold or not:
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-2.5650 -0.8750
MI=| oo Lolso | detMD=-56776

e Check whether matrix inequality (4.3.16) negative semi-definite or not.

[ -1.0000 0 0.1000 0.2200 0.2000 0.0600 |
0 -1.0000 0.0600 0.2600 0.1200 0.1000
0.1000 0.0600 -0.1000 0 0 0
0.2200 0.2600 0 -0.1000 0 0
0.2000 0.1200 0 0 -0.1000 0
0.0600 0.1000 0 0 0 -0.1000 |

The determinant is -8.6950e-005. Therefore, the matrix inequality (4.3.16) is feasible.
Therefore, designed time-delay system is globally asymptotically stable.

Certain time delay system (4.3.1), (4.3.2), (4.3.3) are simulated by using MATLAB-Simulink.
Block diagram is shown in Figure 1. Fragments of simulation results are presented in Fig.2, 3
and 4. As seen from these figures, the time responses are stabilized rapidly with minor steady-
state errors. Control efforts have some chattering.

4.3.4 Sliding Mode Control of Uncertain Time-Delay Systems with Parameter
Perturbations and External Disturbances

Now, advanced design results presented in section 4.3.2 can be generalized to design of sliding
mode controller for robust stabilization of uncertain multiple state delay systems with
parameter perturbations and external disturbances.

The uncertain time-delay system can be described by the following state-space equation:

X() = (A + Ay x(t) + (4 + A4)x(t = ) + ...+ (Ay + Ady )x(t = hy )+ Bu(t)+ Df (1), t>0
x()=¢(t), —h<t<0 (4.3.33)

where in addition to (4.3.1), AA4,,A4,,...,AA, are the parameter uncertainties, D is a known
(nxn)-matrix, f(¢) is an external disturbances.
The following assumptions underline our design approach:

Assumption 3: There exist some bounded matrices E, (o), E,(0),...,E (o), such that
Ay(0) = BE, (o)
A4, (c)=BE (o) (4.3.34)

.AAN(O-) =BEy (o)
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If parameter perturbations are not matched, then we assume that they are norm-bounded

rnglx”AAO (0)" <a,

mglx”AAl (o)<

: (4.3.35)
mgx”AAN (0')" <ay

where «,,..., are given positive scalars.

Assumption 4: There exists a matrix £ such that

D =BE (4.3.36)
with

|D|| =« (43.37)

and an external disturbance is norm-bounded
"f (¢ )” < /o
(4.3.38)

where f is a given positive scalar.

The control goal is to design a combined variable structure controller for robust stabilization of
time delay system (4.3.33) with parameter perturbation and external disturbances.

4.3.4.1 Sliding surface and motion

It is clear that the simple sliding mode controller (4.3.2), (4.3.3) is not sufficient for
stabilization of extended time-delay system (4.3.33). We need for example to introduce an
equivalent control term for cancellation of nominal regime of uncertain time-delay system
(4.3.33). For this reason we must determine an equivalent control term for time-delay system
(4.3.33) and then a sliding mode which can be arisen on the sliding manifold s(r)=0 (4.3.3).

First, according to equivalent control method [1], from the following equations:
$(t) =BT Px(t) = BTP(A0 +AA4,)x(t)+ BTP(A1 +A4)

(4.3.39)
+... +B"P(A, +AAy )+ B" PBu(t)+ B" PDf (1) =0

we determine a full equivalent control for the uncertain time-delay system with matched
uncertainties and external disturbance (4.3.33):
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u(t) =u,, (t)=—(B" PBY"' | B" PAx(t)+B" PAx(t=h)+...+ B PAyx(t—hy) |
—(B"PB)™ [BTPAAOx(t)JrBTPAAlx(t—h1)+...+ B" PAAyx(t - hN)] (4.3.40)

—(B"PB)"'B"PDf (1)

Note that, the second and the third parts of (4.3.40) are unavailable because of parameter
uncertainties and unknown external disturbances. But, further we will use only the first
available part of equivalent control (4.3.40). Therefore, similar to [5], [27] and [30],
substituting (4.3.40) into (4.3.33) we have

i(t)=| 4~ B(B" PB)" B" P4, | x(1)+| 4 — B(B" PB)™ B" P4, |x(t—h)
Fot [AN —B(B"PB) ' B P4, ] x(t—hy)+ [AAO — B(B" PB)"' B” PBE, (a)]x(t)
+[ A4, —B(B" PB)" B PBE,(0) |x(t—h) +...+| Ady — B(B" PB)"' B' PBE, (o) |x(i— hy)

+[ D-B(B"PB)" B"PBE | f (1) (4.3.41)

If matching conditions (4.3.34), (4.3.36) are satisfied, then

AA4,—B(B" PB)"' B" PAA4, = BE,— B(B" PB) "' B" PBE, =0

(4.3.42)
A4, —B(B" PB)' B" PAA, = BE, ~ B(B" PB)' B PBE, =0
:AAN —B(B"PB)'B"PAA, = BE, — B(B"PB)"' B" PBE, =0
D—-B(B"PB)"'B"PD = BE - B(B"PB)"' B" PBE =0
and from (4.3.41) we have a sliding time-delay motion as follows
X(t) = Aox(t)+ Aix(t —h) +...+ Avx(t—hy) (4.3.43)

where

(B"PB)'B"P=G, A —BGA, = Ao, A —BGA, = A:...A, — BGA, = Av
(4.3.44)
An equivalent control gain matrix G can be selected such that Ao, A1,..., An are stable, but

this is not necessary for the stability of sliding time-delay system (4.3.43). Stability analysis of
(4.3.43) is given by the following lemma, which is similar to [15].

Lemma 2: Suppose that Assumptions 3 and 4 hold. Then, time-delay sliding motion (4.3.43) is
asymptotically stable, if the following matrix inequalities are satisfied:
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AoP+PAo+R +..R, =—0<0 (4.3.45)

-0 PA; -+ PAx
— T
w=|M P R0 (4.3.46)
_‘T
AP 0 .. R,

where P,Q,R,,...R, are some positive-definite symmetric matrices to be selected. Note that

equation (4.3.45) is a standard Lyapunov matrix equation. Matrix inequality (4.3.46) after
reducing to LMI’s form can be solved by using known techniques, for example given by [17],
[54], [61]-[63] etc.

Proof: Choose a Lyapunov-Krasovskii functional candidate as follows

V=xT(t)Px(z)+§: ij(e)R,.x(e)de (4.3.47)
Z

i=1 t—

The time-derivative of (4.3.47) along the state trajectory of (4.3.43) is given by

V=x (z)[Z§P+PZO TR+, RN}x(z)+2xT (OPAX(—I)+. . 427 (O)PAvx(t—h,)

—x'(t —h)Rx(t—h)—.. —x" (t=hy)Ryx(t—hy)

X(t) T —Q PKI PKN x(t)

—T
_x(t—:}ﬁ) AI.P -R .o . x(t—:h1) =T (OH 20 <0 (4.348)

M=h) | \aTp 0 ... R, |X7A)

where 27 (1) = |x" (Ox" (t=hy)...x" (= hy)|".

In view of (4.3.48) when condition (4.3.46) is satisfied, then (4.3.48) reduces to V<o0.
Therefore, sliding time-delay system (4.3.43) is asymptotically stable.

4.3.4.2. Combined variable structure controller and sliding conditions

For the robust stabilization of uncertain time-delay system (4.3.33) with unmatched
uncertainties and external disturbances we form the following combined variable structure
controller:

K x@)] -
||)f( )l ; SO __ grppyts S (4349

u(t)=u, (1)~ (B"PB) Ts@l s

0 k|
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where
t,, (1) =—(B" PB)™'[ B" PAyx(t)+ B PAX(t—h)+...+ B PAx(t—hy) | (4.3.50)

is an available equivalent control term, %,...,k, and O are the scalar gain parameters to be

m

selected, (BT PB)™'K is a feedback gain matrix, (B” PB)™'5 is a relay gain matrix.

Note that, constructed sliding mode controller consists of three terms:

1) Available equivalent control term for the stabilization of nominal time-delay system.

2) Variable structure control term for the compensation of parameter uncertainties.

3) Min-max (relay) term for the rejection of external disturbances and together with second
term to ensure reaching conditions. Structure of these control terms is typical and very simple
in their practical implementation. The design parameters of the combined controller (4.3.49)
with switching functions (4.3.3) can be selected from the sliding conditions and stability
analysis.

Lemma 3: Suppose that conditions (4.3.35) and (4.3.37) hold. Then a robustly stable sliding
mode can always be generated, on the sliding manifold s()=0 (4.3.3) defined for the

multivariable time-delay systems (4.3.33) with unmatched parameter uncertainties and external
disturbances driven by controller (4.3.49), if the following matrix inequalities are satisfied:

204 Aona PML, + Ao PV, + . Oy Ay P, +(B, +.. o+ By )P—2kedP=—-0<0 (4.3.51)

and,

& Aax (P)L, = BP<0,....05 Ao (P)L, — By P <0 (4.3.52)
) 0

H= ? Mm(]):)lﬂ AP . . 0 <0 (4.3.53)
0 0 oo A (P —B,P

5>df,A.. (P) (4.3.54)

where, B,...,5, >0 are given constants, P=PBB'P is a positive semi-definite symmetric
matrix. Note that matrix inequalities (4.3.51) and (4.3.54) are feasible.

Proof : Let us choose a Lyapunov-Krasovskii functional candidate as:
N t

V=sT(t)s(t)+ Z,B, j sT(0)s(0)do (4.3.55)
=l y—p

The time-derivative of (4.3.55) along the state trajectories of time-delay system (4.3.33),
(4.3.49) can be calculated as follows:

193



V[s(0.50)] = 5" (05(0) + 5" ()s() + Bs" (Os() = Bis" (t = h)s(t = k) + ...+ Bys” ()s(t) = Bys™ (t = hy)s(t—hy)
=2s" (t)B" P[ Ayx(t) + Ax(t — ) + ...+ Ayx(t — hy) + Ay x(t) + A4 x(t — b))+ ...+ Ay x(t — hy )+ Bu(t) + Df ()]
B+t B)s" (Os(O) = Bis" (t=h)s(t = h) .= Bys" (t=hy)s(t = hy)
=2x" (t)PB[BTPAOx(t) + BT PAX(t—h)+...+ BT PAx(t—hy)
+B" PAAyx(t)+ B" PAAX(t —h)+...+ B" PAAyx(t — hy)— B" PB(B" PB)™' B” PA,x(t)
—B"PB(B"PB)"' B" PAx(t— h)) + B" PA4,x(t) + B" PAAX(t—h,)
+..t ABT PAyx(t—hy )+ B" PDf () + (B, +...+ By)x" (t)PBB" Px(t)

—Bx"(t—h)st—h)—...— Byx" (t—hy)PBB " Px(t—hy)

~B"PB(B"PB)" K |x (z)||"S(’;" BTPB(BTPB)15"S8"+BTPDf(z)]

+(B, +...+ By)x" ()PBB" Px(t)— Bx" (t—h)PBB " Px(t—h) —...— Byx" (t—hy)PBB " Px(t— hy)

=2x" (t)[TJAAO +(B 4.+ ﬂN)ﬂ x(0)+ 2x" () PAAx(t =) + ...+ 2x7 (£)PAAyx(t — hy,)

—2x(0)| STOKS@) 55" OO | 1) BT pDf (1) = BT (1= )Pt = by )= o™ (t— by )Pt — hy)
[s@)] [s@|

< 200 A PO + 257 (N, + ..+ B PX(E) + 20 A (P ()| = )|

tevat 20y Ay (P) X2 = Pry)|| — 2k

x(0)||s@)]| = 28 |s@)]|+ 24fy Aryax (P)
= Bx" (t=h)Px(t =) —...— Byx" (t—hy ) Px(t—hy)
(4.3.56)
= X" (O] 2@y A (P, + 2B, + ...+ By ) P2k, 0P | x(0)
+ 20 Ay (P) (O[5 = )|+ .+ 20 Ay (P) x| |62 = 1y )|

+ 2[dfoﬂmax (P)- 5]||s(z)|| —Bx" (t=h)Px(t—h)—...— Bux" (t—hy)Px(t—hy)

Since, 2ab < a’ +b* where a and b are some scalars, then
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204 e (P)[x O] = )] < 4 Ay (P X" (0)x(0)+x" (1= ) x(t = Iy) |

' _ . . (4.3.57)
20ty Ay (PY RO (= )| < A (PY 6 (Ox(0) + 27 (1 =y )x(t = ) |

Therefore, (4.3.56) becomes

V <X (O] 200 A (P, + (B, + .ot B )P =2k 0P + 0 Ao (PVL, + o+ @ i (P, |x(2)
37 (=) (@A (PY, = BP) Jx(t =) .o XT (6= By Y@y Ao (P, = By P)x(t =) (4:3-58)
=28 = dfy A (P) ||s(0)]

If simple linear for P matrix inequalities (4.3.51) and (4.3.52) are satisfied, then rearranging
(4.3.58) we have

T

x(®) -0 0 0 x(0)
o) 0 @ PV, - BP ... 0 X=hy)
X(t_hN) 0 0 aNﬁ’max(I_))In_ﬂNF x(t_hN)

2 8 = dfy Ao (P) |50
= 2" Hz(t) = 2| 8 = dfy Ay (P) |[50)] < 2|6 = dfy A (P)]s0)] <0 (4.3.59)
Therefore, Lemma 3 is proved.

4.3.4.3 Robust stabilization of closed-loop system

The final step is to determine the control design parameters such that the uncertain time-delay
system (4.3.33), (4.3.49), and (4.3.3) with unmatched parameter uncertainties and matched
external disturbances are globally asymptotically stable with respect to state coordinates.

Theorem 5: Suppose that Assumption 3 (4.3.35) and 4, Lemma 2 and 3 are met. Then the
uncertain multivariable time-delay system (4.3.33) with unmatched parameter perturbations and
matched external disturbances driven by combined controller (4.3.49) is robustly globally
asymptotically stable with respect to the state variables, if the following conditions are
satisfied:

al;i’max (P)In - Rl < 0""’aNﬂ’max (P)In - RN < O (4360)
A0P+PA0+ R +... Ry + 204 Ay (P) I, + @y Ay (P) I, 4+t Ay (P) I,

—2keod . (BT PR PBRTP=-0<0 (4.3.61)

‘min
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) 0 0

0 Armax (P)I 0
H=| . : : <0 (4.3.62)

0 0 Uy A (P), - R

max

in (B PB)™ =¢f;) (4.3.63)
where P,R,,...R, are some positive definite symmetric matrices. Note that, conditions
(4.3.61) and (4.3.62) are simple matrix inequalities, which are feasible. However condition

(4.3.60) after reducing to standard form can be solved by algebraic Riccati equations
techniques.

Proof: Choose a Lyapunov-Krasovskii functional candidate as follows:

V[x(t),x(e)]=xf(t)Px(t)+ j xT(0)R,x(0)d O (4.3.64)

llth

The time-derivative of (4.3.64) along the state trajectories of time-delay system (4.3.33),
(4.3.49), (4.3.3) can be calculated as follows:

V =2x" (t)P[ Apx(t)+ Ax(t =) + ...+ Ayx(t = hy) + Adgx(H) + Adx(t— ;)
+...+ Ay x(t —hy )+ Bu(t)+ Df (1) |+ x" () Rix(t) = x" (¢ — h)R x(t — ) (4.3.65)
+ot X (ORyx ()= x" (t—hy)Ryx(t—hy)

= 2x (6)[ PAx(t) + PAX(t =) + ...+ PAX(t = hy )+ PA4yx(t) + PAAx(t— Iy)

+...+ PAAyx(t—hy)— PB(B" PB)" B" PA,x(t)— PB(B" PB)"' B" PAx(t—h,)

—..—PB(B"PB) ' B" PAyx(t—h,)— PB(B" PB) ' K|x (t)||||s(t;"—PB(BTPB) 5"S8"+PDf(t)]

+x (t)(R1+...+RN)x(t)—x (t—hl)Rlx(t—hl)—...—x (t—hy)Ryx(t—hy)

= 2xT ()P Aox(t) + 2xT ()P Arx(t — ) + ...+ 2xT ()P An x(t — hy, ) + 2x7 () PAA4,x(2)

s(t)(B" PB) ' Ks(t)
s

+2x" () PAAX(t = b)) + ...+ 2xT (1) PAAy x(t — by ) = 2||x (1)

s(t)(B" PB)'s(?)

~265
sl

+2xT ()PDF (t)+ X" (E)(R, +...+ Ry )x(?)

—x"(t=h)Rx(t—h)—...—x" (t —hy)Ryx(t—hy)
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where ZO,ZI,...,ZN are defined by (44) for example Ao = A, —B(B"PB)"'B" P4,.

Using evaluation techniques improved in sections 4.3.2.2 and 4.3.3.2, (4.3.65) can be evaluated
as follows:

V< xT(z‘)[Zg P+PAo+R +...+ R, 2k, ol (B"PB)" PBBTP} x(t)

+201, Ay (P ||| |62 = )|+ -+ 20y Ay (P ||| |2 = )|
~26A,, (B" PBY ' ||s(0)|| + 2¢f, ||s(0)|| = x (¢t = ) Rix(t = b)) = .= x" (t = b)) Ry x(t = )
<x(1) [Zﬁm PAo+R +...+ R, +2a,4,, (P)I, —2k . k. (B'PB)" PBBTP} x(1)

+ 0 Ay (P)XT (O)X(E) o4 Oy A (PYXT (D)X(8) + 0 A (P)XT (= Iy )x(t = )
(4.3.66)
Fot oy A (P)XT (= hy)x(t—hy)—x" (t—=h)Rx(t—h)—...—x" (t—h)Ryx(t —hy)

257, (B"PBY" ~ef, ||s(0)|

If, quadratic for P matrix inequality (4.3.61) and conditions (4.3.62) and (4.3.63) are satisfied,
then rearranging (4.3.66) we obtain:

x@) T[-0 0 0 x(1)
| K= |10 @A (P, =R, .. 0 x(t—"hy)
x(t—'hN) 0 O aNﬂmax(I;)In —Ry || x(t=hy)

=zT (t)Hz(1) <0  (4.3.67)
where 27 (1) = [xT (1) xT (1= ). 2T (1= hy) |-

Therefore, time-delay system (4.3.33), (4.3.49), (4.3.3) is robustly globally asymptotically
stable. Theorem 5 is proved.

4.3.4.4 Example 2

Consider time-delay system (4.3.33), (4.3.49), (4.3.3) with the nominal parameters given in
design example 1 and by the following parameter perturbations:

1 0.2sin(?) 0 | 0.Tcos(?) 0 _10.2cos(?) 0
AAO‘[ 0 o.1sin(t)}’AAl{ 0 O.2cos(t)}AA2_{ 0 O.lcos(t)}'

Matching condition for external disturbances is given by:
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D:BE:{ 1 ﬂ{ozmm ()}:chmt 0 Qnmq

0o 1 0 02 0 02};°f0):{ 02

Design procedures can be fulfilled by the following steps:

e Solve the matrix inequalities (4.3.60)-( 4.3.62) by using Matlab programming:

clear
clc
AO=[-1 0.7;0.3 1];
Al=[0.1 0.1;0 0.2];
A2=[0.2 0;0 0.1];
B=[1 0;0 1];
R1=[1 0;0 1];
R2=R1;
Q=[1 0;0 1];
P=[1 0.6;0.6 1];
Pline=P*B*B"*P;
lambdamax_Pline=max(eig(Pline));
lambdal=min(eig(inv(B"*P*B)));
w=1/sgrt(max(eig(Pline)));
d=norm([0.2 0;0 0.2]);
fO=norm([0.2;0.2]);
In=Q;
k1=2;
alfaO=max(eig([0.2 0;0 0.1]))
alfal=max(eig([0-1 0;0 0-2]))
alfa2=max(eig([0.2 0;0 0.1]))
lambdamax_P=max(eig(P))
A0l 1ne=A0-B*inv(B"*P*B)*B"*P
MI1=A0line"*P+P*A0line+R1+R2
+2*alfa0*lambdamax_P*In+alfal*lambdamax_P*In
+alfa2*lambdamax_P*In-2*k1*w*lambdal*Pline+Q
MI1_det=det(MI1)
det(-alfal*lambdamax_P*In+R1)
det(-alfa2*lambdamax_P*I1n+R2)
H2=[Q zeros(2:2) zeros(2:2);
zeros(2:2) -alfal*lambdamax P*In+R1 zeros(2:2);
zeros(2:2) zeros(2:2) -alfa2*lambdamax P*In+R2 ]
H2 det=det(H2)
H1=-H2
delta=d*fO0*lambdamax_Pline

where

a,=02; =02, a,=02; o= 0.6250

10
0=1I,=R, :RZ:[O 1} k=2

1.2000 1.3600

b

[ 1.0000 0.6000 . 5_[1:3600 1.2000
1 0.6000 1.0000
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-1.6400 -0.2000

MI =
{ -0.2000 2.8400

} : det(MI)= -4.6976

Ao (P)=1.600; A, (P)=2.5600

0.6800 0
B =t (P, :{ 0 0.6800}
0.6800 0
By =t (P, :{ 0 0.6800}
100000 0 0 0 0 0]
010000 0 0 0 0
0 0 0680 0 0 0
H= 0
0 0 0 0680 0 0o |
0 0 0 0 0680 0
0 0 0 0 0 0680]

det(H)=0.2138
d =max|D|=02; f, =max|f(t)]|=02828; A, (P)=2.56; & =0.1448

Notice that the conditions (4.3.60)-( 4.3.63) hold and we have designed all the parameters of the
combined sliding mode controller.

The uncertain time-delay system (4.3.33), (4.3.49) and (4.3.3) with given parameters are
simulated by using MATLAB-SIMULINK. Block diagram is shown in Fig.4.3.5. Simulation
results are given in Fig.4.3.6-4.3.8. As seen from these figures, system time responses are
stabilized satisfactorily with some oscillations and minor steady state errors. Design example
shows the usefulness of the proposed design approaches.

4.3.5 Conclusion

The problem of sliding mode controller design methods for both certain and uncertain multi-
input systems with several fixed state delays is addressed. Two types of sliding mode
controllers are proposed: 1) Simple sliding mode controller is designed for the stabilization of
certain time-delay systems and 2) Combined sliding mode controller is designed for the
stabilization of uncertain time-delay systems with parameter perturbations and external
disturbances. Delay-independent sufficient conditions are given for the existence of a sliding
mode and the robust asymptotic stability of the closed-loop systems by using Lyapunov-
Krasovskii functional method combined with matrix inequality techniques. Some new matrix
inequalities are evaluated for mathematical analysis of time-delay systems. Feasibility of hard
solvable matrix inequalities by using modified algebraic Riccati equations is discussed.

Two numerical examples with simulation results are given to illustrate the usefulness of the
proposed design methods.
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Figure 4.3.1 Block diagram of certain time-delay system with simple sliding mode control
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Figure 4.3.2 State responses

Figure 4.3.3 Switching functions

Figure 4.3.4 Control function
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Figure 4.3.5 Block diagram of Uncertain Time-Delay System with Combined Sliding Mode Control
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Figure 4.3.6 State responses

Figure 4.3.7 Control functions
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Figure 4.3.8 Switching functions

Figure 4.3.9 State responses
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Figure 4.3.10 Control functions

Figure 4.3.11 Switching functions
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CHAPTER 5

Sliding Mode Observers Design

In this chapter robust linear state observer, reduced-order sliding mode observer and time-delay
observers for multivariable uncertain systems are systematically presented.

5.1 Robust improved state observer coupling schema design

In this section a robust improved state observer coupling schema is designed.

5.1.1 Introduction

In this section [1] a new robust decoupling state observer including an extra non-linear term has
been proposed. This extra term is used to overcome the difficulty due to the unstructured
parameter perturbation. It was highlighted that the nonlinear observer scheme requires the
solution of a quadratic matrix inequality which is not straightforward. This inequality was
rewritten as a quadratic Riccati equation by introducing a parameter & which was successfully
solved by proposed algorithms. However, the proposed observer possesses some shortages, for
example, strictly speaking, the observer error dynamics is function of error, plant state and
extra term and origin e=0 is not equilibrium point because plant state and extra term can
increase unboundedly. Therefore, selected Lyapunov function is not a good candidate and
observer state error does not go to zero.

In these comments, an improved simple linear Luenberger robust state observer for the linear
MIMO systems with unstructured parameter perturbation is considered in light of design of
coupling controller-observer scheme. The same observer problem mentioned above is solved
only by using a simple linear Luenberger scheme without including any extra non-linear term.
The simple linear Luenberger scheme is considered as a completely dual form to the linear
multivariable controller and investigated together with controller. Then the design parameters
of coupling closed-loop observer controller system are selected such that the observer error
dynamics and plant state equations are globally asymptotically stable. The stability conditions
are formulated in terms of two quadratic Riccati equations and one matrix inequality.
Therefore, the coupling observer—controller laws can be constructed from the positive definite
solutions of these algebraic Riccati equations and matrix inequality. Also the elegant reduced
design methodology of completely symmetric dual coupling closed loop observer-controller
system is presented.

5.1.2 Brief analysis of existing linear observers

In paper [1], a new robust decoupling state observer scheme including an extra non-linear term
has been proposed. The purpose of a proposed non-linear state observer is to estimate the
unavailable state variables of the linear MIMO systems with unstructured parameter
perturbations. The main results of this paper which determines the construction of a Luenberger
observer combined with extra non-linear term are given in the following theorem [1].
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Theorem 1: Given a linear uncertain MIMO system with unstructured parameter perturbation
x(t) =[ A+ AA(c)]x(t)+ Bu(t)
V() = Cx(#) + Du(t) (5.1.1)

where x(z) is a state n-vector, u(¢) is a control m-vector, y(¢#) is an output p-vector and

||AA(O')|| , <0, & is constant, then the robust non-linear state observer:

x(t) = AR(t) + Bu (t) + H[y(t) - (1) ]+ a (2(2), (1))
V() = Cx(t)+ Du(t) (5.1.2)

where 7(¢)is the residual defined as follows

r(t) = y(1) = 3(t) = C[ x(1) - (1) ] = Ce(t)
(5.1.3)

estimates the unavailable state variables x(¢), or the observer state error equation:
e(t)=x(t) - fc(t) =(A—- HC)e(t) + A(o)x(t) — a(x(1), (1) (5.1.4)

converges to zero, if the following extra non-linear term using to overcome the difficulty due to
unstructured parameter perturbations AA(o) is satisfied:

a(j(t),r(t)) = %P‘ICW(Z) (5.1.5)

where P is the symmetric positive-definite matrix of Lyapunov V-function
Ve(t)) = %eT (t)Pe(t) (5.1.6)

and satisfies the following quadratic matrix inequality:
(A—HC)' P+ P(A—HC)+2P* + 81 <0 (5.1.7)

where H is such that 4 — HC is stable. It was highlighted that the nonlinear observer scheme
requires the solution of a quadratic matrix inequality which is not straightforward. This
inequality was rewritten as a quadratic Riccati equation by introducing a parameter & which
was successfully solved by proposed algorithms. For using design procedure of [2] to solving
ARE in [1] has been assumed that [1] an unique positive definite solution P of quadratic Riccati

4,—HC 21
equation exists if and only if the system matrix {5 1} is observable and
el

. . . 1
controllable; H” norm of this matrix transfer function is less then or equal to ¥ where y =—.

2
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However, the proposed observer possesses some shortages:

1) Observer (2) involves an extra non-linear term (5) depending on estimated state variables,
residual and their non-linear functions. Practical implementation of this non-linear term is
difficult too.

2) Strictly speaking, the observer state variable x(z) can not be considered as the estimate of

plant state variable x(#) in (1) since as seen from (4) observer state error dynamics is
function of e(¢), x(¢) and a(¢), then origin e=0 is not equilibrium point for (4), because
of plant state variables x(¢), if they are unstable and extra term «(#) (5) can increase
unboundedly as pointed in [1] also. Consequently, e(#) does not go to zero as ¢t — o . For

this reason we can conclude that the selected Lyapunov function (6) is not a good
candidate. Therefore, the proposed non-linear robust state observer [1] needs to be
improved. Moreover, observer for uncertain systems should be designed together with state
controller because observer error equation (4) is dependent of x(¢), too. It should be noted

that various coupling observer controller design for linear multivariable systems without
parameter perturbations and closed-loop stability analysis are considered by several authors
and presented for example in [3]. Recently, the new observer and coupling observer based
controller are designed in the behavioral context by [4].

In this comments, a modification of improved simple linear Luenberger robust state observer
design for the linear MIMO systems with parameter perturbation is considered. The same
decoupling observer problem mentioned above is solved only by using a simple linear
Luenberger scheme without including any extra non-linear term. The simple linear Luenberger
scheme is considered as a completely dual form to the linear multivariable controller based on
dual time-invariant observer concept [5] and investigated together with controller. Then the
design parameters of coupling closed-loop observer controller system are selected such that the
observer error dynamics and plant state equations are globally asymptotically stable. The
stability conditions are formulated in terms of two quadratic Riccati equations and one matrix
inequality, which can be successfully solved by using very well known algorithms [1], [2]. An
elegant reduced design methodology of completely symmetric dual coupling closed loop
observer-controller system is presented also.

5.1.3 Robust linear observer design method

Consider a linear uncertain MIMO system with parameter perturbation described by (1). Let us
form a simple linear Luenberger observer as follows:

2(t) = AR(0) + Bu(t) - Bv(?)

(5.1.8)
P(t) = Cx(t)+ Du(t)
where v(¢) is linear Luenberger compensative term which can be selected as follows:
v(t) =—L(y(0) = () = —Lr(1)
(5.1.9)

= —LCe(t) = —k,p B" Re(t)

where L is observer gain ( px p ) matrix in term of r(¢), k. is constant gain parameter, R is
the positive-definite matrix to be selected. Here we assumed that there exist a matrix R such
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that the structural constraint similar to [6], [7] is satisfied, LC =kpsB’ R =K 55, Where K s
is observer gain ( pxn ) matrix in term of r(¢) . Note that this coupling observer scheme uses
only the residual as input signal.

The dual linear control law is defined as:

u(t) = —Gx(t) = —k oy B' PA(1) (5.1.10)

where G =kponB' P, G the control gain matrix, k,y is constant gain parameter and P is a
positive definite matrix to be selected.

Then the observer error dynamics can be obtained as
&(f) = x(t) — x(¢)
= Ae(t)+ AA(o)x(t)+ Bv(t) (5.1.11)

=[ A—koysBB' R |e(t) + A(0)x(1)

and closed-loop system state equation (1) become

%(£) = Ax(t) + AA()x(£) — k. BB PA(2)
= Ax(t) + A(0)x(t) — keoy BB P x(t) —e(t) ] + k oy BB Pe(t) (5.1.12)

=[ A—keoyBB" P|x(0)+ A(0)x(1)
Thus, the dual coupling closed-loop observer control system equations are presented as follows

d0)| [ Ak BB'R M) e(?)
_ (5.1.13)
M)| | kpyBB'P Ak BB'P+A(G) || X(0)

We assume that the pairs (4,8) and (C,4) are completely controllable and observable
respectively. This implies that we can find the design parameters such that all eigenvalues of

the matrices A—kcoyBB'P and A—k,pBB" R have a desired location in the left-half of s-

plane. Moreover, we need some additional system structure conditions similar to in page 2 for
solving algebraic Riccati equations.

The main results which determine the design parameters of the coupling observer-control
construction are given in following theorem.

Theorem 2: Given a linear uncertain MIMO system with control law (10) and simple linear
Luenberger observer (8) with the dual compensative term (9), then the dual coupling closed-
loop observer-control error system with unstructured parameter perturbation (13) is globally
asymptotically stable, if the following conditions:
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PA+ AT P+2max Ad” (6)Ad(c) + P> —2kcon PBBT P =~Qcon (5.1.14)

RA+ A" R+ R?* —2kgs RBBT R = —Q g (5.1.15)

where Qqoy and Qs are positive definite matrices and matrix inequality

_ T
= Qoss . kcoyPBB' P >0 (5.1.16a)
_kCONP BB P QCON
or Schur complement
H = Qpys —kioyPBB"PQ! PBB'P >0 (5.1.16b)

are satisfied.

Proof: To examine the stability of dual coupling closed-loop observer-control system (13), we
define a Lyapunov V-function candidate as a full quadratic form of e(t) and x(t):

T
V(x(t),e(t)):{igg:l Fg g}{im =T (t)Px(t) +¢” (t)Re(t) (5.1.17)

where P and R are positive-definite matrices. The time-derivative of (17) along the closed-loop
trajectories of (13) is given by:

V(x(¢),e(t)) = 2x" (H)P(A — kppp BB P)x(t) + 2x" (£) PAA(G)x(2)

+ 2k oy x" (1)PBBT Pe(t) + 2" (t)R(A— k533 BBT R)e(?) (5.1.18)
+2¢" () RAA(c)x(t)
Since
2x" (1)PAA(0)x(t) < X" (1) PP" x(1) +x" (1)A4A" (0)AA(0)x(1) (5.1.19)
2e" () RAA(0)x(t) < ' ()RR e(t) +x" (1)AA" () AA(c)x(2) (5.1.20)
Then

V(x(t),e(t)) < x" (t)(PA+ AT P)x(¢)
- 2kCONxT (t)PBB" Px(t)+ x" (t)PP" x(t) + x" (t)AA" () AA(c)x(t)
+ 2k oy x" (t)PBB Pe(t) +e” (t)(RA+ A" R)e(t) — 2k yse” () RBB” Re(t) +e" (£)RR” e(t)

+x"(H)AA" (0)AA(o)x(t)
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=x" (z)[PA + A" P+2maxAd’ (o)Ad(o)+ P* - 2kCONPBBTP}x(z) +2kponx" (t)PBB" Pe(t)

+e” (O)|RA+ AT R+ R~ 2k 5 RBB" R (1) (5.1.21)
Letting
PA+ A" P+2max Ad" (0)AA(c) + P> —2kppy PBB" P =—0 0y (5.1.22)
RA+ A" R+R* —2k s RBB” R = —Q s (5.1.23)
Then (21) leads to
T
. ] [ Ooss  ~keonPBB'P|[e)] [e®] [e(®)
V(x(£),e(t)) < — =— H (5.1.24)
x(t) ~kcoyPBB" P Ocon x(1) x(1) x(7)

In view of (24) if the conditions of (14), (15) and (16) are satisfied, then (24) reduces to
V(x(t),e(t)) £ 0. Therefore, the coupling closed-loop observer-control system with parameter
perturbation is globally asymptotically stable, that is x(¢) and e(?) converge to zero. Theorem 2
is proved.

5.1.4 Solution of the quadratic Riccati equations algorithm

By using very well known solving algorithms for quadratic Riccati equations [1], [2]; our
completely identical to [2], [1], [8] algebraic Riccati equations (22), (23) and matrix inequality
can be solved as follows:

Step 1: Choose any positive definite matrices P, R and gain constants k., .k, such that

A—KcoyBB"P and A—K,zsBB" R are stable. Initialize & to some starting value, e.g. £ =1.

Step 2: Determine whether the transformed similar to [1],[2]. Riccati equations (22), (23) have
(for &0con,e00ps ) some positive definite solutions for given O,y and Qgzs. If positive
definite solutions exist, the algorithm succeeds.

Step 3: Determine whether the already linear matrix inequality (16) for determined P,R,Qcoy
and Q,gs has a positive definite solution. If the solution exists go to Step 4. Otherwise, stop
and the algorithm fails.
Step 4: ¢ =% if ¢ is less then some computational accuracy &, then stop, the algorithm fails.
Otherwise go to Step 3.

Step 5: the algorithm effectively succeeds and use (9), (10) to compute observer and controller
gain matrices K, and G .

5.1.5 Reduced design
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Letting in (17) P=R and in (9), (10) k,zs =k-oy =k , that is considered coupling observer-
controller system is completely symmetric and dual form, then the stability conditions (14),
(15) and (16) are reduced to:

PA+ A" P+2max A4" (0)AA(c)+ P> —2kPBB"P=-0Q,0=0" >0 (5.1.25)
where O =0,y then O,z = 0+2max 44" (6)AA(o)

+2max 44" (6) 44 ~kPBB" P
L _[0+2max 44" (@)44(0) i

(5.1.26a)
—kPBB" P 0

or Schur complement

H =0+2maxA4" (6)A4(c)-k*PBB"PO'PBB"P>0 (5.1.26b)

Therefore, the design procedure is simplified considerably.

5.1.6  Conclusion

We have considered a modification of improved simple linear Luenberger robust coupling state
observer for the linear MIMO systems with parameter perturbation. Observer scheme is
considered as a completely dual form to the linear multivariable controller and investigated
together with controller. Then the design parameters of coupling closed-loop observer-
controller system are selected such that the observer error dynamics and plant state equations
are globally asymptotically stable. The stability conditions are formulated in terms of two
quadratic Riccati equations and one matrix inequality, which can be solved by using effectively
algorithms [1], [2]. Reduced design methodology of completely symmetric dual coupling
closed loop observer-controller system is presented also.

5.2 A new reduced-order sliding mode observer design method: A triple
transformations approach

In this section, a triple state and output variable transformations based method to design a new
reduced-order sliding mode observer for perturbed MIMO systems is developed. The state and
output variables of original system is triple transformed in to suitable canonical form
coordinates where the dynamical reduced order observer can be successfully designed. Existing
reduced-order observer design techniques and state-output variables transformations are
summarized in this study and presented systematically. A new combined observer configuration
is proposed. Some new adequate evolution of matrix inequalities is adopted. Global sufficient
asymptotical stability and sliding conditions for the coupled observer error system are
established by using Lyapunov full quadratic form and formulated in terms of Lyapunov matrix
equations and matrix inequalities. Reduced analysis of separated reaching and sliding modes of
motion of decoupled observer error system is discussed also. Two numerical examples are
given to illustrate the usefulness of proposed design method.

5.2.1 Introduction

The observer for linear systems was first proposed and developed by Luenberger [9]. An
observer that estimates all of the state variables is called a full-order observer. But, an observer,
that estimates a part of the state variables referred to be a reduced-order observer.
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In recent years, the state observation problem of uncertain dynamical systems subject to
external disturbances has been a topic of considerable interest. Variable structure control with a
sliding mode is an established method for control and observation of uncertain dynamical
systems. There are several modification of discontinuous state observers which were
successfully designed by Utkin [10]; Hashimoto, Utkin, Xu, Susuki and Harashima [11];
Walcott and Zak [12]; Edwards and Spurgeon [13]; Sira-Ramizer, Spurgeon and Zinober [14];
Young, Utkin and Ozgiiner [15]; Watanabe, Fukuda and Tzateftas [16]; Slotine, Hedrick and
Misawa [17]; Mielczarski [18]; Jafarov [19] etc.

Moreover, some new configuration of Utkin reduced-order observer for canonical systems
without external disturbances, Walcott-Zak full-order observer for MIMO systems with
external disturbances and Edwards and Spurgeon reduced order observer for canonical MIMO
systems with external disturbance have been successfully designed by Edwards and Spurgeon
[20]. The min-max observer control term with non-linear gain parameters is used for
stabilization of observer error systems. These types of observers are designed by Lyapunov V-
function method such that observer state error dynamics is globally asymptotically stable or
globally uniformly ultimately bounded because some times the sliding and stability regions are
restricted by some small ball [12]. Recent advances in design of sliding mode controllers and
observers are presented by Jafarov and Tasaltin [55], [56]; Choi [57]; Yeh, Chien and Fu [58];
Singh, Steinberg and Page [59]; Sabanovic, Fridman and Spurgeon [60]; and special journal
issues [61] and [62].

In this paper, a triple state and output variable transformations based method to design a new
reduced-order sliding mode observer for perturbed MIMO systems is developed. The state and
output variables of original system is triple transformed in to suitable canonical form
coordinates where the dynamical reduced order observer can be successfully designed. Existing
reduced-order observer design techniques and state-output variables transformations are
summarized in this study and presented systematically. A new combined observer configuration
is proposed. Some new adequate evolution of matrix inequalities is adopted. Global sufficient
asymptotical stability and sliding conditions for the coupled observer error system are
established by using Lyapunov full quadratic form and formulated in terms of Lyapunov matrix
equations and matrix inequalities. Reduced analysis of separated reaching and sliding modes of
motion of decoupled observer error system is discussed also. Two numerical examples are
given to illustrate the usefulness of proposed design method.

Further, we will use the following notation:

| x[|=vx"x is the Euclidean norm; || A ||=+/2,u (A" 4) is matrix norm; T is the transpose

of a vector or matrix; Rayleigh’s min-max matrix inequality for a positive definite matrix P:
0 <Dy P [[x][7 <x"Px < & @[]

where A, (P) and A
respectively.

nax (P) are minimum and maximum eigenvalues of the matrix P,

5.2.2. Reduced-order observer configuration

5.2.2.1. System Description and Assumptions

Consider the original uncertain MIMO system described by the following state space equations:

x(t)=Ax(t) + B°u(t) + f(t,x)

y(t)=C’x(t) (5.2.1)
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where x € R" is an unmeasured state vector, ue R™ is a control input and ye R” is a measured
output vector with m < p < n. Nominal linear system (A°, B?, C°) is known and input and

output matrices B°and C* are both of full rank and p = m.

We need to make the following conventional assumptions used in sliding mode control theory
a) The pair ( A°, B’) is completely state controllable, that is

rank[ B°1 A° B’ 4°% B°:...iA°"" B°J=n (5.2.2)
and pair (A°,C?) is observable, respectively.

b) f(t,x) is the unknown n-vector function, which represents the system nonlinearities plus any
model uncertainties and external disturbances, satisfies the conventional matching condition
[12]:

f(t,x)= B &(t,x) (5.2.3)

where the function &(t,x): R+ xR» —R™ is unknown lumped function, but norm-
bounded:

e l[<p+p lyO N < o+ 1 Aan (€T COx0)] (5.2.4)
where p and u are given positive scalars.

Thus, the system (1) can be rewritten as
X (= A"x(t)+ B? [u(t)+ & (1.x)]
y(©=C"x(t) (5.2.5)

The problem to be considered is that of reconstructing the unknown state variables x(t) using
only measured output information y(t).

First we consider the system described by (5) under above mentioned assumptions that the pair

(A, B?) is controllable. As the outputs are to be considered, it is logical to effect a change of
coordinates so that the outputs appear as components of the state coordinates.

5.2.2.2 Triple State Transformations

First transformation: Original system (5) can be transformed by the following similarity
transformation [21]-[23]:

z—[zl}—Tlx (5.2.6)

Z,

into following conventional controllable canonical form:

z,=Az, + Az, (5.2.7)

z,= A} z,+ AL z,+ B} (u+¢) (5.2.8)
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y' =Fy=Cz, +C,z, (5.2.9)

where
M MA°U MA° ! !
T'A4°T ' = A°[U V]= v e Al“ A}Z =4,
W WA'U WAV AL, AL

M ° 0
o {i)r ol
2

FC'T'=FC°[U Vo[ FC'U FC°V1=[ C, C,];
Y MU MV] [I,, O
TlTl = [UV]: = R
w WU WV 0 1,

M
T7'T,=[UV ][W} =UM+VW=1,

Z,1s a (n-p)-vector

z, 1s a p-vector

M is a (n-p)xn of full rank matrix

W is a pxn-matrix

U is a nx(n-p)-matrix

V is a nxp-matrix

B; is a pxp-matrix because p = m

C, is a design px(n-p)-matrix

C, is a design pxp matrix of full rank and non-singular
[, is a nxn-identity matrix.

F is an mxm-output design matrix satisfying structural constraint [12]:
C,=FC°V =B\ P, (5.2.11)

where P, is a positive definite ( p x p )-matrix to be selected.

Second Transformation: This state transformation is given by similar to [24]:

T, {Z‘}{X}} (5.2.12)
Z2 y

where X, is an unmeasured state (n-p) vector. This transformation leads system (7) — (9) to the

following controllable canonical form in space [ x,, y ]:

) 2 1
X =45 X + ALy

V=A%, + Ay y' + By (utg) (5.2.13)
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AZ A} I 0
T2A1T2—1:|: ;1 ;Z}ZAZ, 7”2:|: n-p :|’
Ay A3 ¢ G

L[, o7fo 0 07
TZB = e L= 5 =B ;
Cl C2 B2 C2B2 B2

where B22 is a (pxp)-matrix.

Note that, 7, is non-singular, because C, is a non-singular.

I 0 I 0
= T, T =] "
2 |:'C-21C1 C-21:|’ 252 |: O I }

p
[C G IL'=[ 0 1, ]
which are therefore correct.

Therefore, from (14)-(16) we calculate

T2A1T2_1: In-p O Alll A112 In-p 0
C, G )[4y 4n][-CiC G

_C1A111 +C2A;l ClAllz +C2A;2

A121 A122 — A2
Ay Az

Hence

A121 = Alll - Allzcﬁlcl

— In»p Alll In—p A112 In-p
-Cy¢, ¢y

_]n-p Alllln-p - ]n-p A112c_21 Cl In-p A112c-21
(C, 4, +C2A;1)In—p (C1A112 +C2A;2)C_21

(5.2.14)

(5.2.15)

(5.2.16)

(5.2.17)

(5.2.18)

and the design matrices C, or C, can be selected such that the matrix A, always has stable

desirable eigenvalues.

In other words, in terms of the structural conditions the second transformation means that the

following conversion is true. Indeed, from (9) we have

Z; :_Cglclzl + C;lyl
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which acts in (7) as control input. Then

21 =(Al, - 4,C3'C)z, + 4L,C5'y! (5.2.20)

Therefore in terms of [x1 y] we have the same results (13):

xi=Alx, + A%y (5.2.21)

where 4] always has stable desirable eigenvalues.

In order to verify the first and second transformations in terms of output equation let us
evaluate the output variables in various state coordinates :

y'(t)= Fy(t)=FC°x(t)=C,z, + C,z,

=[c, C][} =[C, 1T m

2

“[coC Infp 0 X,
Lo ee Gy

[0 1, ]m =y'() (52.22)

Therefore, the first and second transformations are true.

Observer Configuration: Now, let us form a simple reduced order observer, structure of
which is similar to the twice transformed system (13) but is different from [12] :

)él = Alzl)’el + AlzzJA/l
JA’I = A221)%1 + Azzz);1 +Bzzu’Bzzv (5.2.23)

where % and §' are the new state estimates vector of the observer; Vv is the observer control
vector term to be selected.

If the error between the estimates and the true states are written as €, =x,-x, and observer
residual:

rt)=y' -3 (5.2.24)
then the following observer error system can be obtained from (13) and (13) as follows:

é = Abe, + ALr

F=Aje + Apr+ Bl v + B (5.2.25)

Now, our goal is to construct an observer control term such that on the formed sliding surface
defined for the error system (25) at the finite time generated is asymptotically stable sliding

221



motion. Then the unmeasured reduced state x;(t) will be corrected by the observer. A remaining
part x,(t) or z,(t) will be calculated from (19).

5.2.2.3 Observer control term
Let us select observer control term of the form:

V(0 = v, (0 +2,. () =~Ls(O)=| S+ k[ )] | (B2 BB m (5.2.26)

where L is an observer gain ( p X p )-matrix, § and k are some scalars to be designed; s(¢) is
the switching function to be defined. The observer combined control term (26) consists of two
parts: 1) linear Luenberger control term v, (#) for compensation of linear perturbation portion

of error system (25); 2) variable structure control term v (#) for compensation of lumped

external disturbance.

The switching function can be defined as:

s(t)=B2" Pr(t) (5.2.27)
where P, is a (pxp)-positive definite design matrix to be determined; from (14), (10)

B} =C,B) = BéTPzB; = BZZT >0 is a positive definite (pxp)-matrix.

Third Transformation: Thus, we have constructed a reduced-order observer and control term
(26) with the sliding surface s(¢)= 0 (27) defined for the observer error system (25) in space of

[e1 r] ..Now, on the formed sliding surface s(z)= 0 can be organized the stable sliding mode.

For this reason, it is rational to transform the observer error system (25) into [el S] state-space
form [25] by the third change of state and residual coordinates:

T, {ﬂ{ﬂ (5.2.28)

where

T. [1‘”’ 0 } (5.2.29)
3: T . L.
0 BP

Then, at last after triple coordinate transformations we obtain an observer error system in
suitable canonical state-space form of [e; 5] :

€, =4, +A4,s
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s = Aye, + Ayps+Byv + B, & (5.2.30)

where

I, 0 0 0 0
T,AT ' = Ay Ay =4 ; T,B*= P o [ 2}: T :{ }:B (5.2.31)
A, 4, 0 B, P||B] |B BB B,

r . » . .
B,=B; P,B;=B," >0 is a positive definite matrix.

T, fo ’ T,7," by 0 5232
S O30S N e .
Then, from (28) and (31) we calculate
— I, 8 }{AIZI Alzz} I, 0 |
3 3 T
|0 By BJAL 4n]| 0 (BZZ PJ

2 2 | p2T )71
_ TA11 TAlz(Bz PzT | :{All AlZ}:A (5.2.33)
5pay B Ra(E R ] LA

Hence we see that 4, = 47, and therefore A, has always stable desirable eigenvalues because
of (17) and (18). Moreover

T T

4 = Bz2 PzAzzl = Bz2 PZ(ClAlll + CZAél) (5.2.34)
In particular, C, or C, can be selected such that

4, =-C'Ci4, and 4, =0 (5.2.35)

Thus, the reduced-order observer error system (30), (26) can be presented in the canonical
state-space form of [e¢, s ]:

& (1) = 4y, (1) + 4,5(0) (5.2.36)
$(1) = Aye, (1) + Ans(t) —[5 + k! (t)MBz (BX'P,B)"! ﬁ+ B,&(1,)

with sliding surface

s(t)=0 (5.2.37)

where Az = A,, —B,L is stable matrix. Desirable eigenvalues of which can be assigned by
pole placement method.

5.2.3. Stability analysis of observer error system
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The sufficient conditions for global asymptotical stability of the observer error system (36) at
e

the point { 1}=O with a stable sliding mode on s(¢)=0 (37) are established by using
s

Lyapunov V-function method and formulated in terms of Lyapunov matrix equations and
matrix inequality. The following theorem summarizes our stability and sliding results.

Theorem 3: The coupling observer error system (36) is globally asymptotically stable and in
general on the formed sliding surface s(¢) =0 (37) always is generated a stable sliding mode,

whenever there exist a family of symmetric positive definite design matrices P, P, and Q, Q,
Q such that the following conditions are satisfied:

P4y +4,"P=-0; 0 >0 (5.2.38)
Pydn+4»"P,=-0,; 0, >0 (5.2.39)
—(PA,+ AP,
0 = Q1 . . ( 1412 T4y 2) >0 (5.2.40a)
_(BAIZ +‘421P2) Qz

or its Schur complement :

Q = Q1 - (HAlz + Azrlpz)Qz_] (HAlz + Azrlpz)r >0 (5.2.40b)
i (B) = Pl (P, By) (5.2.40¢)
k Ayin (By) = 1| Aoy (F~ T F ™) 2,0 (P, B,)

(5.2.41)

Proof: Choose a Lyapunov full quadratic form of coordinates of [e, s ] as follows:

T

V( _e B Y es "p Tp 5242

e,s)= : o Pl =e, Pe +s P,s (5.2.42)
2

where F is a(n-p)x(n-p)-matrix, £, is pxp-matrix, which are positive definite. Then, the time
derivative of (42) along the trajectory of the observer error system (36) can be calculated as
follows:

V=-elQe +2e PA,s—5s"Q,s+2el Al P,s
(5.2.43)

~257 P, [0+ K|y 0)]]] B, (B2 P B2 ||j8”+ 257 P,B,E (1,%)

Since

B, = 322 Pszz is a positive definite matrix, then we can present a feedback gain matrix in (26)
also as:

5 0 k- 0
o Hyl(t)“ (B2’ P,B2)"! (5.2.44)

m m
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where 6,,...,0,, and ki,....kn are some gain constants to be selected.

Since, in space of [e,y']:

|EEX)| < o+ i A (F~TF ) H y! (z)” (5.2.45)

T 2
and s”sign(s) = ﬁ = % = ||s|| (5.2.46)
s
Then
~25"P, [5 k! (t)MBz (B P,B2)"! ﬁ < —2[5+ K|y (t)m i (B8] (5.2.47)
because

5+ K (t)”]ﬂ,mm B)s[ <s7PJs+ k' (t)”]s <ls+ k' (t)”]@max B)|s|” (5.2.48)

Therefore (43) can be evaluated as:

V <—el Qe+ 2¢l (R + ALP)s =5 05 =2| 5+ k[ (O] | i (P 5]+ 202 (BB, 5]
(5.2.49)

241\A (T 2 (BB || 0]

where P,B, is a positive definite matrix.
Hence

T
V-S_H { 0 ~(R4, +A§1Pz)} H
s | | ~(Rdy+4,R) 0 s

—2[5/1“1“1 (Pz) - p/lmax (PZBZ):I"S"

2K (P~ 1 P FTF ) 2 (PB) |83 )]

In view of (50), if the sufficient conditions (38) - (41) are satisfied , then (50) reduces to

Vg—{el} QE}SO (5.2.51)

N

(5.2.50)

for all ¢, (1) #0,s(t)#0.
Therefore, we conclude that the reduced-order observer error system (36) is globally

asymptotically stable and in general on the sliding surface s(¢) =0 (37) always is generated a
stable sliding mode. The Theorem 3 is proved.
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5.2.4. Reduced analysis of reaching and sliding modes of motion

In section 2.3 we have pointed that in particular the design parameters C, and C, can be
selected such that 4, =0. Then observer error system can be separated into two decoupled

reaching and sliding modes. First, let us consider the sliding conditions for the separated
observer error system.

Corollary 1: Suppose that 4,; =0 in (36) and conditions (38)-(41) of Theorem 3. Then sliding
surface s(¢#) =0 (37) is reached in finite time and on the sliding surface always is generated an

asymptotically stable sliding mode.
Proof: Choose Lyapunov V-function candidate as

Vi(s)=s"P,s (5.2.52)

where P, is a positive definite matrix.

Then the time derivative of (52) along the trajectory of the second separated equation of
observer error system (36) can be calculated as:

Vi=—s"0s-25"P, [5+ k“yl (I)‘H B,(By' B,B3)" "S%g"

+28" PBE(1,3) < =57 035 =2 410 (B) = P (BB:) ]|

2 K ()= 1 s (B TF D (PB) [l )
(5.2.53)

In view of (53), if conditions (39), (40¢) and (41) are satisfied then (53) reduces to:
V. =2s" (t)Ps(t) < —s"Q,5 <0 (5.2.54)

Therefore, we conclude that an asymptotically stable sliding mode always is generated on the
sliding surface s(z)=0 (37) defined for separated observer error system. The corollary is

proved.
Now let us shortly analyze the separated modes. Since in sliding mode s(1)=0 and s's5 < 0.

However, s(t) as control input is going to the first equation of observer error system (36).
Therefore, at the reaching phase 0 < <t this state error equation is affected by s(¢) . In that

reaching phase s(¢) is acted as first order dynamic regulator. But, when the sliding surface is

reached the effect of dynamic regulator is disappeared and then more slowly state error
dynamical process so-called a sliding mode is beginning. Consequently, from the first equation
of separated observer error system (36) we can obtain a sliding mode motion as follows

e, (1) = Aye,(?) (5.2.55)

where A, is a stable matrix, desirable eigenvalues of which each can be assigned by pole
placement method. Sliding mode is a slowly mode of motion. It should be noted that a stronger
condition, guaranteeing an ideal sliding motion is the m-reachability condition [12], [26]. For
our multivariable case a n-reachability condition can be rewritten as
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sTs <—nls|’ (5.2.56)

/lmin (QZ )

where 7 =m is a positive constant. Then the sliding surface is rapidly reached at very

small time, therefore the reaching time can be evaluated as:

2
t, < kol (5.2.57)

n
Thus, there are two time-scale behavior [27] of motion:

1) reaching mode of motion and 2) sliding mode of motion.

Reaching mode is a fast mode of motion and can be determined by second equation of observer
error system (36). Nominal part of reaching mode is described by equation:

5(t) =(Ay — B,L)s(1) (5.2.58)

Desired characteristic equation of the closed-loop system (58) is given by

#(s) = ‘s[p — Ay +ByL | =s" +a, 5"+ tas+a, =0 (5.2.59)

where 222 is a stable matrix which can be selected by pole placement method for example by
Ackerman’s formula [28]. Pole placement procedure can be adopted to our problem as follows.

_ -1
L=[0..1][B, 4,B,..4%'B, | $(4y) (5.2.60)
where
P(Ay) = A3 +a, Ay +.c vy Ay + g, (5.2.61)

5.2.5. Design Examples

Let us consider observer design examples to illustrate the usefulness of the developed reduced-
order observer design method.

5.2.5.1. Numerical example: Consider a simple numerical example illustrating the design
procedure. The second order system is given by

4° :{_9 6:|, B :F}, C® =[-0.250.25],

-13 10 3

Suppose that £ =0.2, p=0.2

‘JJ—AO‘ =A*~A-12=0 then 4, =4, 1, =-3. A° is unstable matrix.

Design procedure can be fulfilled by the following steps:

e (Calculate
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4080 = -9 6|1 (9
=13 10| 3] [17
0 () 0 1 9 . . . . .
[B A B ]: determinant of which is different from zero, therefore, system is

controllable.

e Suppose

3 -1 Lo Lo
T, = then 7, = , T =
-2 01 23 0 1

e (Calculate the first transformation

7|3 1[0 e[ v]_[-14 s u]_[2 10]_ ,
ATy {-2 1}{-13 10}{2 3}{ 5 —2}{23}{1 —1}_

o |3 =117 [o]
LB = =| |=B
-2 13| |1
From (10), (11):
11
FC'T =1x[-0.25 0.25]{2 J =[0.250.5]=[c, C,]
Let P, =0.5 then C, =B P, =1x0.5=0.5.

e (alculate the second transformation

1 T 1 1 2 107 1
7= 0] 72 0 par- 0 0 0
1025 0.5 0.5 2 025 05|1 -1|-05 2

"1 oTo] Jo 2 10 1 0] [-3 20
T,B' = =" |=B = = =4
7 7025 0.5__1} {0.5} L 2}{-0.5 2} {o 4}

A}, =-3 is stable.

e (Calculate the third transformation
[ ]

B3"P, =0.5x0.5=0.25

Then
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T oT-3 2071 07 [-3 5
TSAJ-; = = :A
0 4/ 0 440 025 0 4

eig(A)=-3, 4

o L

e (alculate the sliding and stability conditions
[ ]

Let O, =1> 0 then from (38) using MATLAB command P, = Lyap(-3,1) =0.1667.

Using pole placement MATLAB command
L =Place(4,2,-2) =3

Then from (36)
An=4-2x3=4-6=-2<0.

e From(39) 0,=1>0.
e PA,=0.1667x5=0.8335, AleP2 =0x0.5=0
P,B,=05%x2=1; n=0.1

1 —0.8335

Then from (40) Q= {—O 8335 )

} > 0 because determinant of which is 0.3053.

e Let p=0.2 then from (41) gain parameter k = 0,4 .

Thus we have determined all the design parameters
of the second order observer.

5.2.5.2 Observer design example for AV-8A aircraft: Now, let us consider more complex
observer design example for lateral dynamics of the AV-8A Harrier aircraft in hovering flight.
The nominal parameters of this aircraft are taken from [29]:

%(t) = Ax(t)+ Bu(r)
¥(0)=Cx(?)

where the state vector is represented by

x"=[y ¢ vrop],

w is the Euler yaw attitude perturbation (rad)

¢ is the Euler roll attitude perturbation (rad)

v is the velocity perturbation along body y axis(m/s)

r is the body-axis yaw rate (rad/s)
p is the body-axis roll rate (rad/s);

The control inputs are u” =[5, ,7 Srup ]
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5LAT

5RUD

is the lateral stick perturbation (cm)
is the rudder pedal perturbation (cm)

The system, control and output matrices are

K 0 0 1 0 ] 0 0

0 0 0 0 1 0 0 )
A=l0 98 0042 0o o0 |"B'=| 0 -0270)C {

0 0 -0.007 -0.06 -0.075 0.0055 0.085

0 0 -0.039 0.11 -0.260 | [0.177 -0.033

1011
1101

For the simulation, the parameter perturbations are accepted as follows: A4, =0.2sin(¢)4, .

Design procedure of sliding mode observer can be carried out by the following steps:

. Eig(AO):;t1 =0,4,, =0.271550.6239 , 4, =-0.8253, 1 =-0.0798 ; A"is unstable.

® CONM=

rank CONM=5

e OBSM =

rank(OBSM)=5

0 0 0.0055
0 0 0.1770
0 -0.2700 0 0.0113
0.0055 0.0850 -0.0136 -0.0007

0.1770 -0.0330 -0.0454 0.0285

0.0850
-0.0330

-0.0136
-0.0454
1.7346
0.0042
0.0103

1 0 1 1

1 1 0 1

0 -0.0460 1.0500 0.6650
9.8000 -0.0810 1.1100  0.7400
-0.4508 -0.0314 0.0102 -0.2517
-0.7938 -0.0332 0.0148 9.5244
-0.3073 0.0111 -0.0283 -0.3861
-0.3256 -0.3702 1.0468 -3.2712
0.1084 0.0148 -0.0408 -0.2047
-3.6275 0.1358 -0.4226 0.4464 |

S O O o o o o o —/ =

e T, is selected such that

0.2000
0.1000
T.=| 0.2000
-0.6000
-0.4000

0.2000

0 0.3124 0.9805 -0.0305
0.3000 0.1650 0.5179 -0.0161
0.4000 0.2650 0.8317 -0.0258 |
0.7000 10.0000 0.8000 -9.0000
0.5000 0.6000 0.4000 1.0000

0 03124 0.9805 -0.0305

-0.0007

0.0285
-0.3239
-0.0022
-0.0079

0.1000 0.3000 0.1650 0.5179 -0.0161
0.2000 0.4000 0.2650 0.8317 -0.0258
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0.0042
0.0103
-0.5179
-0.0132
-0.0699

-0.0022
-0.0079
0.2925
0.0030
0.0145

-0.0132  0.0030
-0.0699  0.0145
0.1228 -0.0899
0.0097 -0.0033
0.0369 -0.0148



-0.6000 0.7000 10.0000 0.8000 -9.0000
-0.4000 0.5000 0.6000 0.4000 1.0000 |

-3.7997 -35.1805 26.3872 0.0000 -0.0014
-1.8321 2.6719  0.4961  0.0000 -0.0000
T7'=| -1.0156 -13.6897 93471  0.0718 0.6357
2.0927 11.1749 -8.1134 -0.0239 -0.1808
-0.8316 -11.6643  7.9439 -0.0335 0.6903

-3.7997 -35.1805 26.3872 0.0000 -0.0014
-1.8321 2.6719  0.4961 0.0000 -0.0000
U=| -1.0156 -13.6897 9.3471 |, V'=| 0.0718 0.6357
2.0927 11.1749 -8.1134 -0.0239 -0.1808
-0.8316 -11.6643 7.9439 -0.0335  0.6903

. r 10.1189 -4.1738 [ 0.6250 -0.0000
| 16.5545 -6.9400| "% | -0.0000 0.6250

o C =FCU-= -13.0114 -92.3955 85.9390
-20.4517 -144.6984 135.66399

-0.7405 -0.
° CZZFCOV:B;TP2:|: 0.7405 03870:|

-1.2158 -0.7810

[ -1.5886 -2.3350
27101792 -0.1610

-0.0000  0.0000 52470 10.7427 -0.2962 -0.0024 -0.0822
-0.0000 0.0000 3.0326 2.1118 22724 -0.0112 0.1647
T,B°=| 0.0000 -0.0000 > A'=T,4°T'=| -47200 4.7864 2.6799 -0.0162 0.2009
-1.5886 -2.3350 1853765 209.8028 84.8841 -0.0657 2.3030
0.1792 -0.1610 -11.5365 10.6695 6.5067 -0.0043 0.1590
e From (14)
1.0000 0 0 0 0
0  1.0000 0 0 0
T,= 0 0  1.0000 0 0 ,

-13.0114 -92.3955 85.9390 -0.7405 -0.3870
-20.4517 -144.6984 135.6639 -1.2158 -0.7810

1.0000 0 0 0 0
0 1.0000 0 0 0
T, = 0 0 1.0000 0 0

-20.8355 -149.8591 135.5236 -7.2401 3.5874
6.2486 48.0158 -37.2672 11.2708 -6.8650

-5.7101  7.1587 2.4388 -0.9093 0.5559

-1.7702 11.6974 -5.3826 1.9372 -1.1707
A*=T,A'T,' =| -3.1275 16.8576 -7.0000 2.3812 -1.4371 o A=

98.7361 22.9175-128.6972 17.2054 -10.2540

163.0244 31.6832 -208.7187 27.7767 -16.5546
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-5.7101  7.1587 2.4388
-1.7702 11.6974 -5.3826
-3.1275 16.8576 -7.0000



e Eigenvalues of 4,

2 = -0.9992
2, = -0.0068 + 1.5225i
A = 0.0068 - 1.5225i

1.1071 1.7915
1.7915 2.9646

e FEigenvaluesof P: 4 =02 4,=0.8

B; =C,B) :{

1.0910 1.2279 3.4075 5.5946 10855 -6611
BY'P, = , B,=B;"PB; = , B =
1.7851 2.0198 5.5946  9.1858 6611 4026
100000 0 0 0 0
0 1000 0 0 0
e T,= 0 0 1.0000 0 0
0 0 0 1.0910 12279
0 0 0 17851 20198
[ ]
100000 0 0 0 0
0 1.0000 0 0 0
o T7'= 0 0 1.0000 0 0
0 0 0 173.5745-105.5198
0 0  0-153.4105 93.7567
[ ]
57 7168 24 243 148
18 116 538 516  -314 5.7 7168 2.4
* A=TAT'=| 31 1685 -7 634 38 |» 4,=| -18 116 538
307.8 639 3967 14012 -8534 3.1 1685 -7

505.5 105 -651 23007 -14012

e FEigenvalues of 4,;:

A = -0.9992
A = -0.0068 + 1.5225i
4, = -0.0068 - 1.5225i

which are stable.

[ 14012 -8534
21 23007 -14012

Eigenvalues of 4,, 4,,= 0.6605, -0.0097 are unstable.

e Solving Lyapunov equation (38) by Matlab Lyap(al1,Q1) command
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3114 32471 52463
B =] 32471 18119 28699
52463 28699 45673

where determinantis 1.1031e+008.
1 00
O=/010
001
e Using pole placement for (37) with desired poles -0.8F0.1i then

13886 -6969

L=place(A22,B2,desired poles)=
. place(A22,B2,desired_poles) {_5953 2719}

— [ -0.8000 -0.1000
21 0.1000 -0.8000

e Solving Lyapunov equation (39)

[ 0.6250 -0.0000
271 -0.0000 0.6250

where the determinantis  0.3906.

0 ) 515.8387 -314.1695
633.7755 -385.9977

B

1 0 -243.1087 148.0664
Qz _{ }’ A12 =

_ | 307.8391 63.9048 -396.6819
2| 505.5256 104.9028 -651.3012

A (P,B,) =7.8708, 11=02

e Calculate O from (40a) :

1 0 0  -34655984 21106489 ]
0 1 0  -19641359 11962315
0= 0 1 0  -30995700 18878225
-34655984 -19641359 -30995700 1 0
| 21106489 11962315 18878225 0 1]

which is positive definite.

e (Calculate 5 from (40c)
0=1.5742

e Calculate & from (41)
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6.1423 -3.6941
14.6517 -8.9558

F'=

A (FTF) = 3462510, A, (P,B,)= 7.8708
k =146.4576

5.2.5.3. Simulation results

A new configuration of a reduced sliding mode observer (23), (26) for perturbed system (5)
with parameters of Example 2 is shown in Fig. 5.2.1. This system is simulated by using
MATLAB-SIMULINK program. Simulation results are presented in Fig. 5.2.2, 5.2.3, 5.2.4, and
5.2.5. The sliding mode observer estimates the state vector satisfactorily.

5.2.6 Conclusions

In this section, a triple state and output variable transformations based method to design a new
reduced-order sliding mode observer for perturbed MIMO systems is developed. The state and
output variables of original system is triple transformed in to suitable canonical form
coordinates where the dynamical reduced order observer can be successfully designed. Existing
reduced-order observer design techniques and state-output variables transformations are
summarized in this study and presented systematically. A new combined observer configuration
is proposed. Some new adequate evolution of matrix inequalities is adopted. Global sufficient
asymptotical stability and sliding conditions for the coupled observer error system are
established by using Lyapunov full quadratic form and formulated in terms of Lyapunov matrix
equations and matrix inequalities. Reduced analysis of separated reaching and sliding modes of
motion of decoupled observer error system is discussed also. Two numerical examples are
given to illustrate the usefulness of proposed design method.
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5.3 Design modification of sliding mode observers for uncertain MIMO systems
without and with time-delay

In this paragraph, the sliding mode observers design techniques for MIMO and as a simple
example for SISO systems are systematically advanced as a first purpose. Design parameters
are selected such that on the defined switching surface always is generated asymptotically
stable sliding mode. Moreover, observer state error dynamics is globally robustly
asymptotically stable. Then, advanced design techniques are generalized to the design of a new
modification of sliding mode observers for uncertain MIMO systems with time-delay. Robust
sliding and global asymptotic stability conditions are derived by using Lyapunov-Krasovskii V-
functional method. By these conditions observer parameters are designed such that an
asymptotically stable sliding mode always is generated in observer and observer state error
dynamics is robustly globally asymptotically stable. The main results are formulated in terms of
Lyapunov matrix equations and inequalities. Design example for AV-8A Harrier VTOL aircraft
with simulation results using MATLAB show the effectiveness of proposed design approaches.

5.3.1. Introduction

The purpose of a state observer is to estimate the unavailable state variables of a plant. The idea
of using a dynamical linear system to generate estimates of the plant states can be traced to
Luenberger (1971) [9], which is the most well known. The Luenberger observer performs well
when the plant dynamics are known reasonable well. A full-order observer design method for
linear systems with unknown inputs is given by Darouach, Zasadzinski and Xu (1994) [31].
However, in the presence of model perturbations and external disturbances, the estimation of
the plant states of uncertain time-delay systems may not be sufficiently accurate. From the
point of view of robust control, the desirable properties and functional possibilities of variable
structure control are very well known (Utkin, 1992 [49]; De Carlo, Zak and Matthews, 1988
[32]; Oh and Khalil, 1995 [44]; Edwards and Spurgeon, 1998 [33]; Edwards and Spurgeon,
2000 [64]; Edwards, Spurgeon and Hebden, 2003 [65]; Yan, Edwards and Spurgeon, 2004 [74];
Garofalo and Glielmo, 1996 [37]; Jafarov, 2000 [55]; Choi, 2004 [57]; Cao and Xu, 2004 [63];
etc.).

In recent years, the sliding mode observer design problem for uncertain dynamical systems
subject to external disturbances has been a topic of considerable interest of several authors.
There are several modification of discontinuous state observers which were successfully
designed by Utkin (1981) [48], Walcott and Zak (1988) [50], Walcott, Corless and Zak (1987)
[51], Zak, Walcott and Hui (1993) [54], Edwards and Spurgeon (1994, 1996, 1998) [35]-[33],
Slotine, Hedrick and Misawa (1987) [17], Watanabe, Fukuda and Tzafestas (1992) [16],
Hachimoto, Utkin, Xu, Suzuki and Harashima (1990) [11] and et al. Lyapunov V-function
method [42] has been used to formulate sliding mode observers design which guarantees that
the state estimation errors converge to zero asymptotically in the presence of matched
uncertainties. In other words, this type of discontinuous observers is designed such that
observer state error dynamics is globally asymptotically stable or globally uniformly ultimately
bounded because the stability region is restricted by some small ball. However, first question
arises as to whether these types of observers provide an asymptotically stable sliding mode or
not because its robustness directly is related with the sliding mode. Secondly, could we
generalize the design of sliding mode observers for uncertain multivariable systems with time-
delay?

It should be noted that in contrast to above mentioned observers, there is a few linear and
variable structure observers for time delay systems (Pearson and Fiagbedzi, 1989 [45]; Fattouh,
Sename and Dion, 1999 [36]; Wang and Unbehauen, 2000 [52]; Wang, Lam and Burnham,
2002 [53]; Jafarov, 1999 [40], 2002 [39], etc.) by using Lyapunov-Krasovskii functionals [41].
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Razumikhin-Hale type theorem (Razumikin, 1956 [46]; Hale and Verduyn-Lunel, 1993) is used
for example by (Mahmoud and Muthairi, 1994 [43]; Shyu and Yan, 1993 [47]) for control of
time-delay systems. Recent advances in analysis and control of time-delay systems using
Lyapunov-Krasovskii functionals are presented by Gu, Kharitonov and Chen, 2003 [67];
Niculescu, 2002 [72]; Richard, 2003 [73]; Fridman and Shaked, 2003 [66]; Jafarov, 2003 [39];
Jing, Tan and Wang, 2004 [71]; etc.

In this paper sliding mode observers design techniques for MIMO and as a simple example for
SISO systems are systematically advanced as a first purpose. Design parameters are selected
such that on the defined switching surface always is generated asymptotically stable sliding
mode. Moreover, observer state error dynamics is globally robustly asymptotically stable.
Then, advanced design techniques are generalized to the design of a new modification of
sliding mode observers for uncertain MIMO systems with time-delay. Robust sliding and
global asymptotic stability conditions are derived by using Lyapunov-Krasovskii V-functional
method. By these conditions observer parameters are designed such that an asymptotically
stable sliding mode always is generated in observer and observer state error dynamics is
robustly globally asymptotically stable. The main results are formulated in terms of Lyapunov
matrix equations and some matrix inequalities. Design example for AV-8A Harrier VTOL
aircraft with simulation results using MATLAB show the effectiveness of considered design
approaches.

The paper is organized as follows: Advanced design techniques of sliding mode observers for
MIMO and SISO systems are presented in section 2. Extension to a new modification of sliding
mode observer for uncertain MIMO systems with time-delay is presented in section 3. Design
example for VTOL aircraft is given in section 4. Finally, the conclusion is included in section

5. The following notation will be used throughout the paper: ||x(t)||=\/xT(t)x(t) and

||A||=«Mmax(AT A) will denote the Euclidean norm for vectors and the spectral norm for

matrices respectively; A", A_. (A), A_. (A) are the transpose, minimum and maximum

max
eigenvalues of a matrix A, respectively; Rayleigh’s min/max matrix inequality for positive
definite matrices P—Q > 0 is:

Aia PYFO]” = A @] < 5" ()P = Q)x(0) < Ay PO = A Q5]
5.3.2 Sliding mode observers design techniques for uncertain MIMO and SISO systems

Before embarking to main results let us consider the contributing factors to the sliding mode
observer design techniques. In this section sliding mode observers design techniques for MIMO
and as a simple example for SISO systems is systematically advanced as a first purpose. Design
parameters are selected such that on the defined switching surface always is generated
asymptotically stable sliding mode. Moreover, observer state error dynamics is globally
robustly asymptotically stable.

The observer design problem involves estimating the states of the uncertain dynamical system
described by the following differential equations:

X(2) = (4 +Ady)x(2) + fo (&, x(1)) + (B + AB)u(?)

(1) = Cx(1)
(5.3.1)

239



where the unknown state x(tf)e R", the control input u(f)eR™, the measurable output
»(t) e R?” with m = p <n and the model uncertainties f, € R" are vectors, and the matrices 4,,,
Ad,, B, AB and B are compatibly dimensioned. The matrices B and C are assumed to be of
full rank. The known matrices 4, and B represent the nominal linear model parameters of the
system; A4, and AB are unknown matrices involving all possible system parameter variations.
For solving this problem, we require that the unknown function f(z,x(t)) to be continuous in
x(¢) and the following conventional matching conditions are assumed to be valid. There exist
functions 4,, w and d, such that

Jo(t,x(2)) = Bhy (2, x(2))
ABu(t) = Bw(t) (5.3.2)

Adyx(t) = Bd, (£, x(t)).

Let

& (t,x(1)) : B (£, x(2)) + dy (1, X(1)) + W(1) . (5.3.3)
It is assumed that

Fo(t,x(t)) = B, (¢,x(t)) (5.3.4)

where the function &, is unknown but bounded, so that

"‘fo (t, x(t))" <pyth "y(t)” < Po + Por Amax (CT0) "x(t)" (5.3.5)

where p, and g, are known constant positive scalars.

Note that, second condition of (2) together with condition (5) limits the class of available
control laws. However, this is a common limitation (Edwards and Spurgeon, 2000 [64]).

Thus, system (1) can be simplified to:

3(t) = Agx(t) + Bu(t) + B&, (1,x(0))
(5.3.6)
»(0)=Cx(1)

It is also assumed that the pair ( 4,, C ) is detectable and that there exists a constant feedback
gain matrix G € R™” such that 4, = 4,—GC has some desirable stable eigenvalues and there
exists a Lyapunov pair (P,Q,) for A, such that the conventional structural constraint
(Edwards and Spurgeon, 1998 [33]):

FC=B"P (5.3.7)

is satisfied for some non-singular design matrix F e R"™".

The problem to be considered is that of reconstructing the state variables using only measured
output information in the framework of modern sliding mode control theory.
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The observer motion is governed by the following differential equation:
x(t) = AyX()+Bu(t)+G [ y(t)- Cfc(t)} —Bv

(5.3.8)
V(1) =Cx(t)

where v is the discontinuous vector term to be formed.

It should be noted that there is various canonical form design of sliding mode observers with
different gain matrices:

e  Walcott and Zak observer (1988) [51]:

n P'CTCe(t
V(x’y’p):_p(t’u)"Ce—(t)”() (5.3.9)
e  Walcott, Corless and Zak observer (1987) [50]:
. P'C"Ce(t)
v(t,x,y)=—-pO)———7— (5.3.10)
|Ce]
e  Edwards and Spurgeon modification (1994) [35]:
—1 T T
V=—pP C" F' FCe(t) (53.11)
|FCe(o)
e  Edwards and Spurgeon modification (1996,1998) [34], [33]:
FCe(t)
v=—p(t,y,u)r—r (5.3.12)
||F Ce(t)||

where e(f) = x(¢) — x(¢) is the observer state error; p, P and F are design parameters. In actual
fact, mentioned observers are all equivalent.

Design parameters of these types of observers were determined by using Lyapunov V-
functional method such that e(#) >0 as ¢t —> o or observer motion is uniformly ultimately

bounded.
Here we consider another type of observer with modified gain matrix:

=—[s,+k, s ppy S0 5.3.13
v=—[ 8 +k|y(®|](B"PB) = (53.13)

where, o, and k; are design constants to be selected; s(¢) is a switching function, which can
be defined as follows:

s(t) = Fr(t) = F[y(t) - $(1)] = FCe(t) = B" Pe(t) (5.3.14)
where F is a design (m x m )-matrix of full rank, r(z) = y(¢#)— y(¢) is the observer residual.

From equations (6) and (8) the observer state error dynamics can be obtained as follows:

&(t) = Ave(t) = | 8, +ky | ()] | B(B” PB)”! "28" +BE, (1,x(1)) (5.3.15)
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where 4, = 4, — GC is a stable matrix.

5.3.2.1 Sliding conditions

Now, in different from above mentioned observer design approaches we want first to organize
on the switching surface s(¢) =0 (14) a sliding mode. For this purpose let us select a Lyapunov

V-function candidate as:
V(s(r))= %ST(t)S(t) (5.3.16)
Then, the time derivative of (16) along observer state error dynamics (15) can be calculated as:

V(s)=s"(6)s(t) =s" (1)B" Pé(t) = &' (t)PBB" P Aoe(?)

sT(t)B" PB(B" PB)™s(t)
Jsco

[ &+ [y0] +57(1)B" PBE,(t,e(1))
(5.3.17)
L OP A+ AT Pe)-5, S"“()“;ﬁ” kol ()IIS"(?“;ﬁ” + 7 (6)B" PBE(1.3(0)

<=2 00,00, 5O~ OISO] + 1 B PBISO+ A (BP0l

=—%ef<z>éoe<z)—[5o—po A (B PB) ||s ()] [ ko = By 2uner (B” PB) |[[y(0)||s(0)]

where P = PBB” P is a positive semi-definite matrix satisfying the following Lyapunov matrix
equation:

[_)ZO+ZOTP:_QO; ona ﬂmin(é)zo
(5.3.18)

where Q, is in general a positive semi-definite matrix.

Thus, if we select the design parameters &, and k, as

8y = Py e (BT PB) (5.3.19)

max

ky = By eras (BT PB) (5.3.20)
then (17) can be evaluated as:
V's—%ef(néoe(t)—[éo = Do (B PB) s <=[ 8, = Py (B"PB) [[s()] <O (5.3.21)

since A,;,(Q)=0. Therefore, we conclude that if the sliding conditions (18), (19) and (20) are
satisfied, then on s(¢)=0 (14) always is generated a robustly asymptotically stable sliding
mode.
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5.3.2.2 Global stability conditions

The next step is to derive the global robust asymptotical stability conditions with respect to the
observer state error coordinates.

Choose Lyapunov V-function candidate as
1 7
Vie)= Ee (t)Pe(t)
where
P=P">0 (5.3.22)
The time derivative of (22) along the observer state error dynamics (15) is given by
V(e(t))=e" (t)Pé(t) = %eT (t)(A] P+ P4y)e(t)+e" (t)PBv +e” (1)PBE, (t,x(t)) = —%eT (0)Ope(?)

¢’ (t)PB(B' PB) ' s(1)
s

L . 18" ((B”PB) ' s(1)
<3¢ 006, + kOl

< —%ef ()0ye(t) = ko2 (BT PBY™ = B, ||| = | 42 (B" PBY™ = py |[s(0)]

[ 8, + ko [y )] +e’ (t)PBE, (1, x(1)) (5.3.23)

s+ By Olls 0]

where

Ao P+P4Ao=-0,; 0,=0," >0 (5.3.24)
Select k, and o, such that

koA, (B"PB)" = 3, (5.3.25)
S, (B"PB)" > p, (5.3.26)
Then (23) reduces to

V(e(t)) < —%ﬂmm (Q0)||e(t)||2 <0 for e()#0 (5.3.27)

Therefore, we conclude that if stability conditions (24), (25), (26) are satisfied then observer
state error dynamics is robustly globally asymptotically stable, i.e. e() asymptotically
converges to zero as ¢ — .
Note that, since 4, (B"PB)= %
A (B' PB)

min

where B’ PB is a positive definite matrix then the

sliding and stability conditions coincide.

5.3.2.3. Simplified design example for SISO systems
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In this subsection finally, let us consider a reduced design of continuous sliding mode observer
for the nominal time-invariant SISO systems when A4=0, AB=0 and f, =0 as a simple

analytical design example.

Then (1) reduces to:

X(£) = Ax(t) +bu(?)
(5.3.28)

y(t)=c"x(t)

where x(z) e R" is the immeasurable state vector, u(¢) is the scalar control input. The measured
output y(¢) is scalar. A, b and c have the appropriate dimensions.

For this case observer configuration can be selected as follows:

x() = AR(0) + bu(t) - bv(t)

P)=c"x(1) (5.3.29)
It is assumed that the pair (4, ¢) is completely observable and structural constraint holds:
fCT :bTP (5330)

where f'is a scalar, P is a positive definite design (nxn)-matrix.

Then, the observer-sliding surface can be defined as:

s(f) = fir(f) =fc e(t) = bT Pe(t) (5.3.31)
Subtracting (29) from (28) we have the following observer error system:

é(t)=Ae(t)+bv(t) (5.3.32)
Now, let us select the observer control term according to equivalent control method:

§(1) = b" Pé(t) = b" PAe(t) + b" Pbv(1) = 0 (5.3.33)
Hence

v(t) =v,,(t) =—(b" Pb)"'b" PAe(t) = —gs(t) (5.3.34)

where (b Pb)! isa positive definite scalar because (" Pb)>0; g is a gain scalar.
Substituting (34) into (32) we have observer error system as:
&(f) = Ae(r) (5.3.35)

where 4 =lA—b(bTPb)71 chAJ. Our goal is to design the parameters f and P such that 4
always is stable or observer error dynamics (35) is globally asymptotically stable.

Now, let us derive the sliding conditions.

Choose a Lyapunov V-function candidate as follows:
Vist) = %sz(t) (5.3.36)

Then, the time derivative of (36) along (35) is given by:
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Vis(t) = s()i(1) = s()b” Pé(t) = s()b" PAe(t)
(5.3.37)

— " ()PbB PAe(t) = %eT(t)(}_’ A+ A" Ple(t) - —%eT(t)Qe(t) <0

where P = Pbb' P is a positive semi-definite matrix satisfying the following Lyapunov matrix
equation:

PA+A"P=-0,020 (5.3.38)
where O is a positive semi-definite matrix.

Thus if (38) is satisfied then on s(t) =0 the sliding manifold (31) always is generated an
asymptotically stable sliding mode.

Remark 1: A simpler alternative to (30), (38), sliding conditions which provides a positive-
definite solution to Lyapunov matrix equation, can be formulated as:

frA =", r<0 (5.3.39)
where 7 is one of the left eigenvalues of the stable matrix 4 corresponding to the eigenvector
ch .

Then (37) becomes

V(s(0)) = s(0)s(t) = s(t)b" PAe(t) = s(t) fe" Ae(t) = s(t)rfe e(t) = rs* (1) < 0 (5.3.40)

And the global asymptotical stability conditions with respect to the observer error state
coordinates:

PA+A"P=-0; 0=0">0
(5.3.41)
easily follows from Lyapunov function
Ve(t)) = %eT (t)Pe(t) (5.3.42)
where P is a positive definite solution of equation (41).
Hence
. 1 1 2
Vie(t)) = —EeT ®)Qe(t) < —E/lmm (Q)||e(t)|| <0 (5.3.43)

Therefore, an asymptotically stable sliding surface is determined through f and P .

5.3.3 Design modification of sliding mode observers for MIMO time-delay systems

The purpose of this section is to extend the design techniques advanced in section 2 for the
design modification of sliding mode observers for uncertain MIMO systems with time-delay.
Direct extension is difficult as well. We overcome these difficulties by using the Lyapunov-
Krasovskii V-functional method.

Consider the uncertain time-delay MIMO system described by the following differential
equations with time-delay:

()= Ay + Ay ) x(0) +( 4 + A4 ) x(1 1)
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+(B+AB)u(t)+ fo(t,x(0) + fi(t,x(t=7)), >0

x(t)=¢(t), -7 <t <0,

(5.3.44)
y(t) = Cx(1)
where the immeasurable state vector x(¢) e R”, the control input u(z)e R™, the measurable
output y(¢) € R” and the unknown disturbances f, e R", f; e R" are vectors, and 4, € R"",
A, €R"", BeR™ and CeR”" are known constant matrices with m = p <n . The matrices
Ad,, A4, and AB are real valued unknown functions representing time-varying parameter
uncertainties, r is a known positive time-delay and ¢(¢) is a continuous vector-value initial
function with ||¢|| = sup||¢(t)|| on —7<¢<0 and x(0)=¢(0) =x,.
We want to design a sliding mode observer modification for uncertain MIMO systems with

time-delay such that in which can always be generated a robustly asymptotically stable sliding
mode.

In addition to assumptions (2), (4), (7) we now make the following assumptions:

Assumption 1: The nominal system of (44) is detectable (Pearson and Fiagbedzi, 1989)
[45]:

rank {SI_AOCT Ae } =n (5.3.45)

for all complex s with Re(s)>0.

Assumption 2: There exist the functions h; and d;, such that the  following
conventional matching conditions are satisfied:

S (@ x(t=7)) = Bhy (¢, x(t ~ 7))

(5.3.46)
A4 x(t—7)=Bd, (t,x(t—1))
Let
& (t,x(t—7)) =M (t,x(t 7))+ d, (1, x(t - 7))
It is assumed that
F1(6x(t =)= BE (6, x(t - 7) (5.3.47)

where the function &, is unknown but bounded, so that

€, (tx(t =)< py + Bi|ly(t = D)< o1+ B A (CTC)|x(t = 7)) (5.3.48)

where p,and g, are the known positive constant scalars.

Then, time-delay system (44) can be represented as
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X(t)=A,x(t)+ A x(t—7)+ Bu(t)+ B&,(t,x(t))+ BS (t,x(t—17)), t>0

x(t)=¢(), -7<t20 (5.3.49)

y(t) = Cx(1)

Now let us construct a new modification of time-delay observer as:

(1) = A () + ARt — 1)+ Bu(t) +G[ y(t)—Cx(t)]- By,

»(@)=C x(t) (5.3.50)

The observer design parameters should be determined so that an asymptotically stable sliding
mode will be generated on the sliding surface s(¢) =0 (14) defined for the time-delay system

(49). The output error feedback gain matrix G can be chosen so that the closed-loop matrix
— A
Ao=A4,—GC is stable and has some desirable eigenvalues.

The discontinuous vector term v, can be selected as follows:

v ==[8 +k |y + k [y~ )] (B"PB) " "z g;” (5.3.51)

where &, k,, k, and P are observer design parameters to be again selected for (49).

Then, the time-delay observer state error dynamics can be obtained from (49) and (50) as:

0= Aty Aet=0) [k 0] ok oo 35"y 2

+BE(t,x(1)) + BE (,x(t-1)), t>0 (5.3.52)

e(t)=4,(6),4,() = p(O) - P(t), —T<t<0.

As seen from (50), (51) the structure of a new combined time-delay observer consists of three
parts: 1) Conventional linear Luenberger part with gain matrix G for the stabilization of the
nominal part of the observer error system, 2) Relay term with gain parameter &, for the

suppression the external disturbance, and 3) Variable structure term with feedback gain
parameters k, and k, for the compensation the parameter perturbations. The design parameters

of combined time-delay observer will be selected by using the classical Lyapunov-Krasovkii V-
functional method.

5.3.3.1 Sliding conditions
The following lemma summarizes the sliding conditions.

Lemma 1: Combined time-delay observer state error dynamics is given by (52). Then, an
asymptotically stable sliding mode can always be generated on the switching surface s(¢) =0

(14) defined for time-delay system (52) if the following conditions are satisfied:
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0 =4 P+P4+R|20, P=PBE'P20 (53.53)

or osﬁg_[zﬁﬁ@z]

- 9 iz (5.3.54)
~A"P R

S > () + ) A (B" PB) (5.3.55)

ko = BoAmax (B PB) (5.3.56)

kl =ﬂlﬂ’max(BTPB) (5357)

where Q, and H are any positive semi-definite matrices.

Proof: Choose a Lyapunov-Krasovskii functional candidate as follows:
t
V(t,0)=s"(t)s(t)+ I e’ (O)Re(0)dO >0 (5.3.58)
-7

- 5T . i . . .
where R=R >0 is a positive semi-definite matrix to be selected.

The time derivative of (58) along (52) can be calculated as follows:
V(t,0)=2s"()s(t)+ e’ (H)Re(t)— e (t —7)Re(t — 1)
=25 (t)BT Pé(t) +€” (t)Re(t) —e” (t—7)Re(t—7)
(5.3.59)

=2¢" (t)PBB’ PA je(t)+2e" (t)PBB" PA,e(t—1)

s (t)B” PB(B" PB)"'s(f)
s

=2[ 8, +ko [y @]+ ki |y =[]

+257 ()BT PBE,(t,x(1)) + 25" (t)BT PB&,(t,x(t — 1)) + e’ (f)Re(t) —e’ (t—1)Re(t—7)
Rearranging (59) similar to (17) advanced in section 2, we get:

V(t,0)<e (t) [Zorﬁ + Pdo + E} e(t)+2¢" (t)PAe(t —7)
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—e' (t—7)Re(t—7)— 26, ||s(t)|| -2k, ||y(t)|| ||s(t)|| -2k, ||y(t - r)" ||s(t)||
2Py + P o (BT PB)[(0)|+ 2y A (B” PB) |y 1) 0] (5.3.60)

+ 28, 2uner (B" PB) | y(t =) |5 (0)]

(e TT 0 -P4 e ] . )
) L(t—r)} {—AlT}_’ R }L(r—r}} 208, =Py + )2 (BTPB) s 0)

—2lky = B2 BT PB) |y @||s(6)] - 2|k, = B A (BT PB) ||yt — )| s(0)] 0)

If the conditions (53)-(57) hold, then (60) can be evaluated as

V(e(z),e(t—r))g{ e(t) } g{ e(?) }

e(t—7) e(t—7)
~2[8,=(Py +£) A (B PB) |s(0)]

<=2[ 8, =(Py+ ) e (B PB) ||s(1)] < O (5.3.61)

. — [ e T 4] e
Since A, [HJ—O and L(l‘—f)} HL(f—TJ <0

Therefore, we conclude that an asymptotically stable sliding motion always is generated on the
sliding surface s(¢) =0 (14). Although, it should be noted that, as shown by Hong, 2004 [69] if

V >0and even ¥ <0 then a state-delayed system is asymptotically stable also.

5.3.3.2 Global stability conditions
The following theorem summarizes our stability results.

Theorem 4: Suppose that Assumptions 1, 2 and the conditions of Lemma 1 are met. Then the
time-delay observer error system (52) is robustly globally asymptotically stable if there exist
some positive definite matrices P, R and positive constant scalars 0,, k, and k, such that the

following conditions are satisfied:

0, =—[Z§P+P£+R} >0 (5.3.62)
H=| @ P, its Sch | H=0 -PAR'A"P>0 5.3.63
=l_47p R > or its Schur complement =0, —P4 P> (5.3.63)

1
5. (BTPB)Y > p,+p (5.3.64)
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ko,

min

(B"PB)" =, (5.3.65)

kA,

min

(B"PB)" =, (5.3.66)

Proof: Choose a Lyapunov-Krasovskii V-functional candidate as:

V(t,0) = ()Pe(t) + j ¢’ (0)Re(0)d0 > 0 (5.3.67)

t—7
where, P and R=R" >0 are any positive definite symmetric matrices to be selected.

The time derivative of (67) along the trajectory of observer error system (52) can be calculated
and rearranged as follows:

V(e(t),e(t—7)) = &" (f)Pe(t) + " (t)Pé(t) + e (f)Re(t)—e” (t—7)Re(t —7)
— (1) [ZOTP + Pdo+ R} e(t) +2¢7 (t)PAe(t —7)— € (1—7)Re(t - 7)

¢’ (t)PB(B" PB)'s()
s

2[5, +k, [y + |y =]

+2e" (£)PBE,(t,x(1)) + 2e" (t)PBE (1, x(t — 7))
=—e' (1)Q,e(t) +2e" (t)PAe(t—7)—e' (t—7)Re(t—17)

sT(t)(BTPB)'s(t)

5.3.68
) (5369

=2[ 6 + ko [y @) + K [yt =) ]

+257 ()&, (8, x(1) + 25" () (¢, x(t = 7))

e(t) T O, -PA| e@® A
S_L(t—f)} {-AFP R L(t-r)}z[élﬂmmw PBY" (o +p) || )

‘min

= 2[ kA (B" PBY ™ = 3, ||y Ols®)]| = 2[ ks Apin (B PBY ™ = B, ||yt = )50

T 1, e .
= L(l —z’)} HL(t—TJ <0 since H>0.

Therefore, we conclude that the time-delay observer error system (52) is robustly globally
asymptotically stable.

Note that, the sliding and stability conditions are coordinated very well.
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5.3.4 Design example

To illustrate the design modification of a combined time-delay observer, let us consider the
observer design example for fault-tolerant control of AV-8A Harrier VTOL aircraft in hovering
flight. The nominal parameters of this aircraft are taken from (Calise and Kramer, 1984) [29]:

() = Ayx(t) + Bu(?)
¥(1) =Cx(1)

where, the state vector is represented by x” = [l// povr p],
w is Euler yaw attitude perturbation (rad),
¢ is Euler roll attitude perturbation (rad),

v is the velocity perturbation along body y axis(m/s),
r is the body-axis yaw rate (rad/s),
p is the body-axis roll rate (rad/s),

the control inputs are u” =[5, ,; Srup]:
O, 47 1s the lateral stick perturbation (cm),
Srup 18 the rudder pedal perturbation (cm),

and the system, control and output matrices are given by:

o 0 0 1 0]
o 0o 0o 0 1
4,=/0 98 0042 0 0
0 0 -0.007 -0.06 -0.075
0 0 -0.039 0.1 -0.260
0 0
0 0 11011
B=| 0 027 |, C:L 1o J
0.0055  0.085
10177 -0.033 |

For the simulation, the parameter perturbations are selected as follows:
AA, =0.2sin(t)A4,, A4, =0.2cos(t)4,, 4, =0.34,

Aircraft model really has some small time-delay because of pilot’s (or commands) effective
time delay (Blakelock, 1991 [30]) and transports delays of aircraft mechanical and hydraulic
servomechanisms. For the simulation purpose, we select 7 =0.24s .

Simplified design procedures for time delay observer (50) and (51) with given parameters can
be fulfilled by the following steps:

o Find the eigenvalues of matrix 4,
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Eig(A, )= 0; 0.2715 * 0.6239i; -0.8253 ;-0.0798

4, 1is unstable matrix.

e Using pole placement Matlab command find gain matrix G for 4, and C such that 4, has
some desirable left eigenvalues:

Desired poles: A=[-2.4 -3 -3+2i -3-2i -3.4]
C=[11011;11101]; G=PLACE(A,",C" )"

[ -1.5081 -3.1242]
-0.9076  2.9437
G=| 24910 5.6844
8.2576 -3.1940
0.0564 3.0359 |

e  (Calculate

4y =4,-G*C

[ 4.6324 4.6324 3.1242 2.5081 4.6324 |
-2.0361 -2.0361 -2.9437 0.9076 -1.0361

=| -8.1754 1.6246 -5.7264 -2.4910 -8.1754

-5.0635 -5.0635 3.1870 -8.3176 -5.1385

-3.0923 -3.0923 -3.0749 0.0536 -3.3523

eig( 4, )= -3.0000 + 2.0000i, -3.0000 - 2.0000i,
-2.4000, -3.4000, -3.0000.

which is a stable matrix.

e  Solve Lyapunov equation (62) for P:
Q=[10000;01000;00100;00010,00001];
where =0, +R=1, ; P=LYAPA,,Q)

1.9024 -0.0668 -1.1028 -1.0030 -0.6566 |
-0.0668 0.2177 -0.0055 -0.1363 0.0822
P=| -1.1028 -0.0055 1.4484 1.2771 -0.2407
-1.0030 -0.1363 1.2771 1.3908 -0.2392
-0.6566 0.0822 -0.2407 -0.2392 0.8960 |

eig(P) =0.0712, 0.0906, 0.2763, 1.5689, 3.8483.

which is a positive definite matrix.

e P=PBB'P
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0.0697 -0.0047 -0.0600 -0.0470 -0.0156 |
-0.0047 0.0004 0.0030 0.0023 0.0020
=| -0.0600 0.0030 0.0767 0.0613 -0.0097
-0.0470 0.0023 0.0613 0.0490 -0.0088
-0.0156  0.0020 -0.0097 -0.0088 0.0250 |

eigP)= 0.1790, 0.0416, 0.0000 + 0.0000i,
0.0000 - 0.0000i, 0.0000

which is a positive semi-definite matrix.
e The conditions (53) and (62) are independent. Equation (62) has a positive definite
solution P. Then (53) always holds because 0 < R < —[ZOT}_%LIBE} .

0.0276 0.0015
lculate B"PB =
* Caleulate { 0.0015 0.0550}

eig(BT PB)= 0.0276, 0.0551 ;
which is a positive definite matrix.

BT po -0.1217 0.0138 -0.0356 -0.0347 0.1573
| 02342 -0.0128 -0.2746 -0.2187 0.0151

36.2214 -0.9658
(B"PB)"! :[ }

-0.9658 18.1922

eig((B"PB)™") = 36.2730, 18.1406

e Select a matrix F such that condition (7) holds:

_{ -0.0347 —0.0356] | -157.5535 20.4257

-0.2187 -0.2746 |’ { 125.4805 -19.9093}

e Select a matrix H, such that a matching condition for external disturbance holds:

0 0
0 0
posn| o oz [000 920
0.0055  0.085 ' ‘
10177 -0.033 |
0 0 0 0 0
o 0 0 0 0
= 0 0 -0.0270 0 -0.0540
0 0 0.008 0.0011 0.0170
0 0 -0.0033 0.0354 -0.0066]

po +py =||D]=0.0639.
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o fy=max|A4|=1.96, 5 =max|A4]=0.588

o Find from (64), (65), (66) :
0,2 0.0035, k,=0.1080, Kk =0.0324

Thus, all the parameters of the time-delay observer are designed.

For testing the combined time-delay observer (50), (51) and (14) is simulated. Block diagram of
which is shown in Fig. 5.3.1. For the convenience of simulation the time-delay system model is
taken as:

() = (Ay + Ay x(t) + (4 + Ad)x(t — 7) + Bu(t)+ Df (f) (5.3.69)

where D is the (nxn)-matrix, f(¢#) is a norm bounded n-vector disturbance || f (t)||£ fo-

Equation (69) can easily be transformed to the form of time-delay system (49). Simulation
results using MATLAB-SIMULINK are shown in Fig. 5.3.2-5.3.7 (for original closed-loop
system) and Fig. 5.3.8-5.3.12 (for original unstable open-loop system). As seen from these
figures, the combined time-delay observer estimates the state vector satisfactorily (observer
residual is satisfactorily small) which show the effectiveness of our observer design
approaches.

5.3.5 Conclusion

In this section we have presented two contributions. One of which is to advance a sliding mode
observer design techniques for uncertain MIMO and SISO systems, such that on the switching
surface can always be generated robustly asymptotically stable sliding mode. The main result is
to design of new modification of sliding mode time-delay observer for uncertain time-delay
MIMO systems with parameter perturbations and external disturbances by using Lyapunov-
Krasovskii V-functional method. Robust stable sliding and global asymptotical stability
conditions are formulated in terms of Lyapunov matrix equations and some matrix inequalities.
Design example for AV-8A Harrier VTOL aircraft with simulation results show the
effectiveness of our observer design approaches.
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Fig. 5.3.1 Block diagram of multivariable sliding mode observer for uncertain
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Figure 5.3.2 Original state responses

Figure 5.3.3 Estimated state responses

Figure 5.3.4 Original output responses
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Figure 5.3.5 Estimated output responses

Figure 5.3.6 Switching functions

Figure 5.3.7 Observer residual
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Figure 5.3.8 Unstable open-loop state responses

Figure 5.3.9 Estimated state responses

Figure 5.3.10 Open-loop output responses
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Figure 5.3.11 Estimated output responses

Figure 5.3.12 Open-loop switching functions
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CHAPTER 6

Stability Analysis and Control of Time-Delay Systems

This chapter consists of four sections. Section 6.1 considers delay-dependent stability and o-
stability criterions for linear time-delay systems. Section 6.2 covers delay-dependent
stabilization of input-delayed systems by linear control. A new design methodology is given.
Section 6.3 develops delay-dependent stabilization of single input-delayed systems by
continuous sliding mode control. A new design methodology is given. Section 6.4 considers
robust stabilization of uncertain input-delayed systems by a new modified reduction method.
An easy way is proposed.

6.1 Delay-dependent stability and a-stability criterions for linear time-delay systems

In this section, some improved delay-dependent stability conditions for linear time—delay
systems are considered by using Leibniz-Newton formula and augmented, special augmented
Lyapunov-Krasovskii functionals. The stability results depend on the size of the delay term and
are given in terms of quadratic forms of state and some matrix inequalities. Four simple
examples are considered systematically to illustrate and comparison analysis of various stability
conditions. The upper bound of delay term is computed by solving of quasi-convex
optimization problem. Stabilization by memory less control is considered as fifth example.

6.1.1 Introduction

It is well known that many delay-independent stability criteria exist for various time-delay
systems based on Lyapunov-Krasovskii functional method [1]-[3], Razumikhin-Hale type
theorem and matrix measures norms. However, recently, there are few delay-dependent results
reported for linear delay systems. The brief review and analysis of various delay-dependent
stability criterions have been considered, for example in [4]-[23].

In [4] the delay-dependent sufficient condition for the stability of linear uncertain time-delay
systems has been derived by using Lyapunov-Razumikhin function approach. A time-delay
term is presented via Leibniz-Newton formula by further substituting into primary system and
later is evaluated by employing Razumikhin-Hale type theorem. However, it is not related to
the system parameters, that is, it is not analytically checkable criterion. Furthermore, this result
is somewhat conservative, especially in situations where delays are small.

Shyu and Yan have proposed [5] new delay-dependent robust a-stability criterion for uncertain
time-delay systems by using standard Lyapunov function method. The time-delay term is
evaluated by employing Razumikhin-Hale type theorem. The stability results are obtained in
terms of matrix norm. In [6] Niculescu has proposed new H.,, memoryless control whit o-
stability constrained for time-delay systems using Lyapunov-Krasovskii functional method
combined with LMI’s techniques. Note that, a-uniformly asymptotic stability implies uniformly
asymptotic stability. However, if a=0, a-stability conditions becomes delay-independent as in
[5]

In [7] the robust exponential delay-independent stability conditions have been derived for
uncertain systems with time-varying delays by using Leibniz-Newton formula and matrix
measure method. Delay-dependent robust stabilization of uncertain systems with time-varying
multiple state delays has been considered in [8] by using Lyapunov-Razumikhin function
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method. As in [4], also in [8] the time-delay term is presented by using Leibniz-Newton
formula with further substituting into the primary system and later is evaluated by employing
Razumikhin-Hale type theorem; as a result the time-delay term appears. Finally, the stability
criterion is obtained in terms of several LMI’s, leading to less conservative results depending on
the size of delay. The useful idea of Su and Huang dealing with the delay terms [4], is
successfully used in [9] for robust decentralized stabilization of large-scale uncertain systems
with state delays. Lyapunov-Krasovskii functional method combined with LMI’s techniques is
adopted. The stability results are depended on the size of the system delays and so they are less
conservative than the Riccati equation approach results. In [10], discrete-delay-dependent
conditions are derived for the robust stability of large-scale systems with after-effect by using
Lyapunov-Razumikhin function combined with Leibniz-Newton formula. The stability results
are obtained in terms of matrix norm. In [11], sufficient mixed delay-independent / delay-
dependent stability conditions for linear systems with multiple state delays are derived in terms
of LMI’s. For the asymptotic stability analysis various standard and non-standard Lyapunov-
Krasovskii functionals combined with some LMI’s are used. This stability result improves
analytically the previous results, where Razumikhin-Hale techniques including some
supplementary constraints on the system and Lyapunov matrices are used. In [12] some new
delay-dependent stability conditions for linear time delay systems with three main model
transformations of the original system are obtained by using Lyapunov-Krasovskii functional
method combined with Riccati matrix equations. Recently a new fourth descriptor model
transformation was introduced for delay-dependent stability of neutral system in [13]. Unlike
previous transformations, the descriptor model leads to an equivalent system. A new delay-
dependent stability conditions for a system with time-varying delays in terms of LMI’s is
obtained in [14]. Park proposed [15] a new stability criterion based on improved upper bound
and LMI’s techniques for systems with uncertain delays. Lyapunov-Krasovskii functional
introduced here involves three particular terms: standard Lyapunov function, standard
Lyapunov-Krasovskii functional and the so—called non-standard functional including quadratic
forms in terms of time-derivatives of state vectors for the h integration horizon [-h,0]. In this
case also a delay term is presented by using Leibniz-Newton formula. An example showed that
the proposed criterion performs much well than several existing criteria. However, these results
have included many parameters and positive matrices that required frequent tuning.

In [16], [17] some recent stability and robust stability results for linear time-delay systems have
been outlined. Two specific delay-independent and delay-dependent stability problems are
analyzed. Several: simple a-stability and robust stability criterions for linear systems with time-
delay are proposed by Niculescu, Verriest, Dugard and Dion using: 1) Lyapunov-Krasovskii
functional method and 2) Lyapunov-Razumikhin function approach combined with Riccati-
equation or LMI techniques.

Determination of augmented quadratic Lyapunov functionals depending on unknown
continuously differentiable matrix functions for linear time-delay systems is considered in [18].
For determination of V(x(d)) some sufficient conditions in terms of ordinary and partial

differential equations are obtained. Note that, in [18] any sufficient conditions especially in
terms of linear matrix inequalities for the stability of time-delay system have not been
considered. Repin approach is very interesting, but as pointed in [18], is very difficult because
of solving ordinary and partial differential equations. A general way for constructing Lyapunov-
Krasovskii functionals with constant quadratic matrices is developed in [1]-[3] etc.

In this paper, some new improved delay-dependent stability and a-stability conditions for linear
time-delay systems are derived similar to the stability criteria [1]-[3], [12], [16]-[17], [20] by
introducing augmented and special augmented Lyapunov-Krasovskii functionals combined with
Leibniz-Newton formula and some matrix inequalities techniques.
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6.1.2 System transformation and preliminaries

Consider the following linear time-delay system

X(t) = Ax(t)+ Bx(t - h), >0
(6.1.1)
x(t) = 4(1), h<t<0

where x(t)eR" is the state vector, A and B are known constant matrices with appropriate
dimensions, h is constant delay, but bounded 0 <h < & , it is assumed that change rate of delay
is slow, that is /() = 0, ¢(t) is smooth vector-valued initial function in —h <t < 0.

Our aim is to derive some delay-dependent stability conditions for (6.1.1) when delay h is
known. If we consider a case where h is unknown then we assume that h is bounded. In this

case stability problem can be formulated as: find the upper bound h on the delay such that the
asymptotic stability of time-delay system (1) is preserved for any positive delay smaller than
the upper bound.

6.1.2.1 a-stability conditions

First let us consider a simple a-stability criterion [6], [16], [20] by using standard Lyapunov-
Krasovskii functional combined with the some matrix inequality techniques. In further we shall
compare our improved stability results with this.

Theorem 1: [6], [16], [20]: The linear time-delay system (6.1.1) is delay-independent
asymptotically a-stable if there exist symmetric and positive-definite matrices P and R
satisfying the following matrix inequality:

_|ATP+PA+2aP+R ¢™PB -

H
B'pe* -R

0 (6.1.2a)

or its Schur complement
H=ATP+PA+2 0 P+R+e?*“"PBR'BTP <0 (6.1.2b)

Proof: Utilize the following state transformation

z(t)=e"x(t), a>0 t>0 (6.1.3)
to transform (1) into following model form

2(t) = ae™ x(t) + e %(t) = (A + al)z(t)+ e Bz(t—h) (6.1.4)

Then, choose standard Lyapunov-Krasovskii functional as
t

V(z(t),z(t—h)) =z" ()Pz(t) + f z'(0) R z(0) do (6.1.5)
t-h
where P and R are symmetric and positive-definite matrices. The time-derivative of (6.1.5)
along the trajectory of transformed system (6.1.4) is given by:
V=2" (O] (A+aD)"P+P(A+al) | z(t)+ 22" ()e" PB(t—h)+ 2" (ORz(t)-z" (t-h)R(t-h)
(6.1.6)
[ 20 ] [ATP+PA+20P+R ePB][ 20 |_,
| z(t-h) B'Pe™ R || z(t-h)
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if satisfied (6.1.2). Therefore, the system (6.1.1) is asymptotically c-stable.

If we consider a case where h is unknown but bounded, then the upper bound of delay h can be
computed by solving the following optimization problem:

OP: maximize h
Subject to H <0 (2)
andP>0,R>0

which is a standard quasi-convex optimization problem. Hence, it is possible to compute the
maximum upper bound h using efficient convex optimization algorithm [22], [8] etc.

Note that in this case a delay term appears in (6.1.6) at once and can be determined from (6.1.2)
as a solution of transcendental matrix inequality. However, if 0=0 or in small values of h or a,
o-stability condition does not depend on the size of delay. To avoid this difficulty, we will
consider below another stability criterion based on augmented Lyapunov-Krasovskii functional
combined with LMI’s techniques.

Example 1: Let us consider the following familiar form [1]-[3], [16] a first-order delay-
differential system

X(t) = —ax(t)— bx(t - h) (6.1.7)

where a and b are scalar constants, h > 0.
Utilize (6.1.3), system (6.1.7) can be transformed into

2(t) = (0-a)z(t)-be™z(t — h) (6.1.8)
Choose Lyapunov-Krasovskii functional for (6.1.8) as

V(z(t),z(t — h)) = %ZZ () +p j 72(0 )do (6.1.9)
t—h

where p > 0 to be selected.
Then

V =(0—a+ Wz (t) —e™z(t)z(t —h)—pz? (t—h)

lah
[y TR A
__L(t—h)} 1 e {z(t—h)}<0 (6.1.10)

2

if the following Sylvester’s conditions hold
a—a>pu>0

|H|=(a—a—u)u—%ez“h >0 (6.1.11)

Therefore (6.1.8) is asymptotically o-stable.
If we consider case where h is unknown but bounded we can solve a convex OP for (6.1.11):

ﬂ:a_a_zuzo’ (6112)
op
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(a_a)Z _CZah b2

Hence uza;za and max |H| = >0 from which stability conditions are

obtained as

(a—0)? >e’*"b? (6.1.13)
Then the upper bound of delay size is given by

a-a

In

h=— 20, (6.1.14)
o

Thus, system (6.1.7) is a-stable for any 0 <h <h if condition (6.1.14) hold.

6.1.2.2 Stability conditions

Theorem 2 [20]: The linear time-delay system (6.1.1) is asymptotically stable if there exist
symmetric and positive-definite matrices P, R and Q satisfying the following matrix inequality

_|ATP+PA+R+hQ PB <

H 0 6.1.15a
B'P -R ( )

or its Schur complement

H=A"P+PA+R+hQ+PBR'B'P<0 (6.1.15b)

Proof: Construct augmented Lyapunov-Krasovskii functional candidate as follows

V(x(t),x(t—h)) = xT (t)Px(t) + j xT(0)Rx(0)dO +T j x"(p)Qx(p)dp dp (6.1.16)

t°h Shothp

The time-derivative of (16) along (1) is given by

V =xT()(ATP+PA)x(t) + 2x" ()PBx(t —h) + xT ()Rx(t)
—x" (t=h)Rx(t—h)+hx" (H)Qx(t) - _f x" (B)Qx(B)dp

[ x® T'[A"P+PA+R+hQ PB] x(© | ¢,
_La-hj { 5T _R}L{(t_h)} [x" @rx@)dp (6.1.17)

t-h

Since the last term in (6.1.17) is positive-definite, then

- Ixo T x(t)
VSL(t_h)} HL(t_h)}o (6.1.18)

if satisfied (6.1.15). Therefore, system (6.1.1) is asymptotically stable.

Example 2: Again consider a simple time-delay system (6.1.7). Choose augmented Lyapunov-
Krasovskii functional for (6.1.7) as

t 0 t
V[x(t),x(t—h)]z%xz(t)ﬂtjXZ(G )de+pj j x2(y )y dB (6.1.19)

-h t+p
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where 1 and p are positive scalars to be selected.
Then

V = ~(a - x” () = bx(x(t = h) — px* (t = h) + phx* (9) - p J.Xz(ﬁ )dp
t-h

1
LT ox TR 2R
“L(t—m} 1y L«t—h)
2

}-psz(ﬁ )B <0 (6.1.20)
t-h

if the following conditions hold

a—pu—ph>0, u>0,0>0, |H| :(a—u—ph)u—%b2 >0 (6.1.21)
Therefore, (6.1.1) is asymptotically stable.

If we consider a case where h is unknown but bounded then we can solve a convex optimization

problem for (6.1.21).

Select p=p, then p <ﬁ and from |H| =ap—(1+h)p? —%bz we have

olH|
— =220+ hpu=0.

u
Hence p= ﬁ . Substituting p into (6.1.21), we have
2 12 2
max [H|= 2 UED =D AR (6.1.22)
4(1+h)?
a? —b?

Hence a’ > b?*(1+h)and h <

et Then the upper bounded of delay size is obtained as

o (a—b)a+b)

. (6.1.23)

Thus, (6.1.7) is asymptotically stable for any 0 <h <h if (6.1.23) holds.
Comparison of (6.1.23) with (6.1.14) shows that the upper bound h, for (6.1.23) is greater than

that h, for (14), i.e. h,>h,.

6.1.2.3 Combined a-stability conditions
To use advantages of Theorem 1 and 2, let us combine those results as follows.

Theorem 3: The linear time-delay system (6.1.1) is asymptotically o-stable if there exist
symmetric and positive-definite matrices P, R and Q satisfying the following matrix inequality

_|ATP+PA+20P+R+hQ e“PB -

H
BTpe* -R

0 (6.1.24a)

or its Schur complement

269



H=A"P+PA+20aP+R+hQ+e’*"PBR'B"P <0 (6.1.24b)

Proof: Choose augmented Lyapunov-Krasovskii functional for (6.1.4) as

t 0 t

V(z(t), 2(t — h)) = 2" ()Pz(t) + j 2" (0)Rz(0)d0 + j j 2" (p)Qz(p)dp dp (6.1.25)

t-h ~h t+p

Then

V=2"(t) [ (A+0)"P+P(A+al) | #(t)+27" ()" PBat—h)+2" (1) R 1)

2 R AL +h (0 Q) [ 2/ (B) Qz (BXIP (6.1.26)
t=h

[0 ] [ATP+PA+2aP+R+hQ e*PB 20 ] | . a) T [0

{z(t—h)} { o X }{ Z(t_h)} IR (B)dﬁs{ Z(t_h)} HL(t_h)}O

if satisfied (6.1.24). Therefore, the transformed system (6.1.4) is asymptotically a-stable.
Clearly that feasible set of (6.1.24b) is always larger than that of (6.1.2b) and (6.1.15b).

6.1.3 Improved stability conditions

Below some improved delay-dependent stability conditions are derived by introducing special
augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton formula and some
matrix inequality techniques and some integral evaluating inequalities.

Theorem 4: The linear time-delay system (6.1.1) is asymptotically stable if there exist
symmetric and positive-definite matrices P, R and Q satisfying the following matrix inequality

H=(A+B)"P+P(A+B)+h[Q+R +PBAQ'A"B"P+PBBR 'B"B"P] <0 (6.1.27a)
or alternative
(A+B)"P+P(A+B)+h(Q+R) -PBA -PBB
H= —(PBA)T —%Q 0 |<0 (6.1.27b)
1
—(PBB)” 0o ——
] (PBB) n R

Proof: Since x(t) is continuously differentiable for t > 0, using the Leibniz-Newton formula,
the time-delay term can be presented as

t
x(t—h) =x(t)- [ %(6)d0 (6.1.28)
t—h
for t > h. Then, the primary system (6.1.1) can be rewritten as
t
x(t)=(A+B)x(t)-B j x(0)do (6.1.29)
t“h

Substituting again (6.1.1) into (6.1.29) yields
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X(t) = (A+B)x(t)-B j [ Ax(6)+Bx(6—h)]do

(6.1.30)
t t
=(A+B)x(t)-BA j x(0)d0— BB j x(0—h)do
t—h t—h
Let us choose a special augmented Lyapunov-Krasovskii functional as
V(x(t),x(t-h)) =V, +V,+V,
(6.1.31)

t

0 0 t
=x"(OPx®+ [ [ x"()Qx(p)dpdd+ [ [ x"(p)Rx(p)dp dO

—h t+6 —h t+6-h

Introduced a special augmented functional (6.1.31) involves three particular terms: first term,
V, is standard Lyapunov function, second and third non-standard terms, namely V, and V; are
similar, except for the length integration horizon [t-h, t] for V, and [t+6-h, t] for V;,
respectively. This functional is different from existing [12], [15], etc.

The time derivative of V, along of twice-transformed system (6.1.30) is calculated as follows

V, =x"(t)(A+B)' P+P(A+ B)]x(t)— 2xT(t)PBij(e)de -2x"(t)PBB j x(0—h)do (6.1.32)
t—h t—h

Proposition 1: The following inequality holds

b b b
—2JuTth SJ‘uTWudtnLjuTW’ludt (6.1.33)
for any vectors u, v and symmetric positive definite matrix W. Then

—2xT ()PBA j x(0)do =2 j x T (tPBAX(0)d0

t=h t=h

< j xT(PBAQATBTPx(t)d0 + j xT(0)Qx(0)d0
“h

t—h t

= hx" (t)PBAQATBTPx(t) + j x"(0)Qx(0)d0 (6.1.34)

t=h

and similar to (6.1.34) we evaluate

~2x"(t)PBB j x(0—h)d® < hx " (t)PBBR'B"B"Px(t) + ij (0—h)Rx(0-h)do (6.1.35)

t-h t-h

V, is calculated as

9 t
Vv, = j [xT (HQx() —x " (t+0)Qx(t+ e)]de =hx" ()Qx(t)— j x " (0)Qx(0)do (6.1.36)
t=h

-h
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Then

V, =hxT (HRx(t) - j x"(0-h)Rx(6-h)d6O (6.1.37)
t—h

t
As seen from (6.1.35) the positive term J.XT(G-h)Rx(G-h)dE) appears in the right side of
t=h
(6.1.35). Third functional V; is introduced to cancel this term. Moreover, for the sake of
simplicity and accordance of results in matrix inequalities (6.1.34) and (6.1.35), it was assumed

that W = Q and W = R in both cases, respectively. Thus, V is obtained as follows:

V=V +V, +V, =x" (0] (A+B)'P+P(A+B) +h(Q+R+PBAQ "A"B'P+PBBR "B'B'P)| x(1)
(6.1.38)
= x"(HHx(t) <0

if satisfied (6.1.27a). Therefore, system (6.1.30) is asymptotically stable. First part of the
Tearoom 4 is proved.
Now let us prove the second part of Theorem 4 when (6.1.27b) is satisfied. From (6.1.32),

(6.1.36) and (6.1.38) V can be calculated as

V=x"()[ (A+B)"P+P(A+B)|x(t)-2x" ()PBA j x(0 )do

t=h

—2xT(t)PBBj' x(0—h)d0 + hx" (HQx(t) (6.1.39)

- j xT(0)Qx(0 )dd+hxT (H)Rx(t) - j. xT(@—h)Rx(0—h) dO
t=h t=h

Proposition 2: The following inequalities hold for any delay h and positive-definite matrix Q

t t T t

j xT (0 )Qx(0 )d@z[ j x(0 )d9] Q[ j x(0 )d@] (6.1.40)
t=h t=h t=h
if h<1, and

t t T t

h j xT (0 )Qx(0 )dez{ j x(0 )d@] Q[ j x(0 )d@] (6.1.41)
t=h t-h t=h
ifh> 1.

Proof: The proof of this proposition is based on the definite integral evaluating theorem [24],
[25]:

m(b—a) < ff(x)dx <M(b-a), a<b (6.1.42)
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where m and M minimum and maximum values of a continuous function f(x) on the closed
interval [a,b]: m < f(x)<M..
Since

- (Q)j xT(0)x(6)d0 < j xT(0)Qx(0)d0 <A, (Q)j x"(0)x(6)d0 (6.1.43)
t—h t—h t=h

- (Q)[ jx(e )de} [ jx(e )de} < { jx(@ )d9:| Q{ jx(@ )d@]

t—h -h -h -h

t T t
<y (Q){ [x@ )d9:| { [x@ )de} (6.1.44)
t—h t—h
and
meS"x":M, 0<x"x<M? (6.1.45)
then clearly that
t t T t
0< j xT( 0)x(0)d0 < M’h and 0< { j x(0 )dGZl { j x(0 )de} <M?’h? (6.1.46)
t—h t—h t—h

Therefore, from comparison of (6.1.43) and (6.1.44) we conclude that the condition (6.1.40)
holds if h<1 because M’h>M?h> and the condition (6.1.41) holds if h>1 because
h-M?h > M?h? . Using Proposition 2 for last integral terms of (6.1.39) we can rewrite

V =xT(0(A+B) P+P(A+B)+h(Q+R)K(t) —2x" ()PBA [x®)d0—2x"(©PBB [ x(0~h)b

—%{ | x(e)de} Q

t=h

t=h h t=h

j x(e)de} —l“ x(@—h)d@} R

j x(0 —h)de} (6.1.47)
t—h

1.
Note that for the case where h <1in according to (6.1.40) the factor " in two last terms of

(6.1.47) disappears.
Thus, we can rearrange (6.1.47) as a full quadratic form of three integral variables as follows:

_ i _ _
1 x(0) (A+B)'P+P(A+B)+h(Q+R) ~PBA —-PBB|| x(®)
V< j x(0)d0 —(PBA) —%Q 0 j x(0)dd |<0 (6.1.48)
t-h t—h
; —(PBB) 0o —1r||:
[ x(6—h)de h j x(0—h)do
| t=h | | t=h |

if satisfied (6.1.27b). Second part of theorem is proved. This stability criterion can be called as
“three integral variables criterion” because of (6.1.48). This approach provided more deeply
investigation of the internal structure of time delay systems.
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Note that, H in (6.1.48) is more informative than that in previous cases because H in (6.1.48)

contains much parameter than that in previous criteria.
Example 3: Again consider simple time delay system (6.1.7)
x(t) = —ax(t) — bx(t-h)
with auxiliary equation
x(60) = —ax(6)—bx(6-h)

Substituting Leibniz-Newton formula
t
x(t—h) =x(t)— j x(0)do
t—h

into (49a) with (49b) we obtain

x(t) =—(a + b)x(t)—ab j x(0 )d0— b2 j x(0-h)do

t—=h

Choose a special augmented Lyapunov-Krasovskii functional for (51) as

0 t 0 t
VO.xO0)xO-h)=x*O+u [ [x*B)dpdo+p[ [ x*(v)dyde

—h t+0 -h t+6-h

where p and p are positive scalars to be selected.
Then

V = 2x()X(t) + phx(t) - j x2(0 )d0+ phx?(t)— p j x2(0-h)do
t=h t=h
=—2(a+ b)x2 (t)—2abx(t) j. x(0 )do— 2b2X(t) j. x(0-h)do
t-h t—h

t t
+phx?(t)—p j x2(0 )d0 +phx2(t)— p j x2(6-h)do
t-h t-h

Using integral evaluating of (6.1.34) and (6.1.35)
t t
—2x(t) j x(0)df <hx2(t)+ j x%(6 )do
t—h t=h
t t
—2x(t) j x(0-h)d6 < hx2(t)+ j x2(0-h)deo
t-h

t=h

from (6.1.53) we have
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(6.1.492)

(6.1.49b)

(6.1.50)

(6.1.51)

(6.1.52)

(6.1.53)

(6.1.54)

(6.1.55)



t t
V <-2(a+b)x>(t)+abhx?(t) +ab [ x*(0)d0+bhx>(H)+b? | x>(6-h)do
t—h t—h
(6.1.56)

t t
+phx?(t)—p j x%(0 )d0 + phx2(t)-p j x2(6-h)do
t—h t=h

If we select p=b? and p = ab, then (6.1.56) reduced to V < —[Z(a +b)+ 2abh—2b2h] x2(t)<0

if H=2(a+b)—2bh(a+b)>0 or bh<l, a+b>0 (6.1.57)
Thus, (6.1.49) is asymptotically stable if
a+b>0, bh<l, p=b*and p=ab (6.1.58)

If we consider a case where h is unknown but bounded then the upper bound h can be obtained
from (6.1.58) as

1

E:E and a+b>0, p=b’, p=ab (6.1.59)

Therefore, we conclude that (6.1.49) is asymptotically stable for any 0 <h <h if (6.1.59) hold.

Example 4: For comparison analysis let us investigate the same problem by using the second
part of Theorem 4.

Thus, we have (6.1.49)-( 6.1.53). Using the properties of (6.1.40) and (6.1.41) we can evaluate
for (6.1.53)

t t 2

[ x2® )dOs-%u[ [ x® )de} (6.1.60)
t—h t—h
t t 2

- xz(e—h)deS—%p[ | x(@—h)d@] 6.1.61)
t—h t—h

Then (6.1.53) becomes

2
. t t 1 t
V<—[2(a+b)-ph -,uh}a(t)—zabx(t)t sz(e )do —2b2x(t)t _[hxz(e—h)de—huL L x(0 )de] 6.1.62)
_ - _ .
, (1) 2(a+b)—ph—ph ab b? (1)
—lp{ [ x(e—h)del = [ x(®)d0 ab Iuo0 | [ x@)d0 <0
h t—h t—h h | t—h
[ x(0-hydo b* 0 &P [ x(0-h)do
| t=h i | t=h i

if satisfied H > 0 for h > 1 or its principles minors are positive:
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H|=2(a+b)—ph-ph >0, p>0, p>0 (6.1.63)

‘Hz‘=[2(a+b)—ph—uh]%u—a2b2 >0 (6.1.64)

H,|=[H|= [2(a+b)—ph—uh]%up—a2b2 —%ub“ —%pazbz >0 (6.1.65)

Thus (6.1.49) is asymptotically stable for h > 1 if (6.1.63) — (6.1.65) hold. If /4 <1 then we
know that

2(a+b)—ph—ph ab b?

H= ab p 01(>0 (6.1.66)
b? 0 p

or

H,|=2(a+b)-ph—ph>0, p>0, p>0 (6.1.67)

|

H,|=[2(a+b)—ph—ph|u—a’b>>0 (6.1.68)

[F|=[ ]

H,|=|H|=|2(a+b)—ph—ph |pup—a’b* —ub* —pa’b* >0 (6.1.69)

[F|=[H] = ]

Thus, (6.1.49) is asymptotically stable for # <1 if (6.1.66) or (6.1.67) — (6.1.69) hold.
Now let us consider a case where h is unknown but bounded. Then the upper bound of h can be
computed as follows for 2 <1.

a+b

Select p=p, then from (6.1.67) 2(a+b)>2puh > 0 and “<T where a+b>0,
— 2 21,2 a‘HZ‘_ —
\Hz\_z(a+b)u—2p h-a’b? and 6—u—2(a+b)—4uh—0.
Hence,
a+b
=27 6.1.70
h ( )
2 _ 9,212
maX‘Hz‘ = (a+b)" —2a’bh >0 from which
2h
(a+b)?
<t 6.1.71
2a%b? ( )
and the upper bound is obtained as
_ (a+b)2 _
2a‘b

From (6.1.69)

276



[Hy|=[2(a+b)—2 ph]u’ —pb?(a+b) = [ 2(a+b)u—2u’h—b*(a’ +b*) | = u[;[ > 0

6‘ﬁ3‘ _ _ _ _a+b .. o .
=2(a+b)—-4ph=0.Hence p= =T which coincide with (6.1.70).

2 AR2(a2 L W2 2
Then, max‘Hz‘ = (a+b) 22bh (a”+b)h >0 from which h <% and the upper
a
bound can found as
_ b)2
f—_(atby” 6.1.73
2b? (a2 +b2) ( )

Clearly that the h (6.1.73) less than h (6.1.72). Therefore, the upper bound of delay size can
found from (6.1.73).

6.1.4 Improved a-stability conditions

Using Leibniz-Newton formula
t
z(t—h) = z(t)— j 7(0)do (6.1.74)
t=h

we can rewrite transformed time-delay system (6.1.4) as

2(t) = (A +al)z(t) +e™Bz(t—h) =(A+e*"B+al)z(t)—e™B j. 2(6’ ) do
th

t t
=(A+e™B+al)z(f)—e” B(A+al) j 2(6)d0 <**"BB j 7(6-h) d@ (6.1.75)
t—h t-h

The following theorem summarizes our improved o.-stability result.

Theorem 5: The linear transformed time-delay system (6.1.75) is asymptotically o-stable if
there exist symmetric and positive-definite matrices P, R and Q satisfying the following matrix
inequality

H' =(A+e”B+al)"P+P(A+e™B+al)

(6.1.76)
+h[Q+R+e°‘hPB(A+aI)Q"(A+aI)BTP +e2“hPBBR"BTBTPJ <0
Proof: Choose a special augmented Lyapunov-Krasovskii functional as
0 t 0t
V(z(t),z(t—h)) =z (t)Pz(t)+ j j Z" (p)Qz(p)dp dO + j j z"(p)Rz(p)dp d®  (6.1.77)
“h tho “h t+b-h

The time-derivative of (6.1.77) along the transformed system (6.1.75) is given by
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V=2" (O] (A+e“B+al) P+P(A+e“"B+al) |2(t) -22" (t)e™" PB(A +al) j 2(0)dO
t-h

27" (t)e*"PBB j 2(0-h)d0 +hz" (t)Qz(t)-j 27 (0)0z(0)d0 +hz" (t)Rz(t)—j 2" (0-h)Rz" (0-h)do
t-h t-h t-h

<2"(O){ (A+eB+al) P+P(A+e“B+al)
+h[Q+R+e°‘hPB(A+uI)Q‘1(A+aI)TBTP (6.1.78)

+¢**"PBBR 'B'B'P] } 2(t) = 2T (OH 2(t) < 0

if satisfied (6.1.76). Therefore, system (6.1.75) is asymptotically a-stable if (6.1.76) hold.
If we consider a case where h 1s unknown but bounded we can solve a convex OP similar to
case 2.1.

6.1.5 Stabilization by memoryless control

Now consider the following linear time-delay system with input delay
X(t)= Ax(t)+Bx(t—h)+Du(t)+Dlu(t—h) (6.1.79)

where D and D, are constant (7 xm )-matrices, u(t) is m-control vector. For stabilization of
(6.1.79) let us choose a memoryless feedback control law as
u(t)=—Kx(t) (6.1.80)

where K is (m x n )-design matrix.
Substituting (6.1.80) into (6.1.79) yields

x(t) = Ax(t)+ Bx(t—h) (6.1.81)

where A= A— DK and B=B- D, K are (nxn)-matrices. Clearly that stability of the closed-
loop system (81) can be easily analyzed by using obtained above stability criterions.

Example 5: Consider the stabilization of first order time-delay system:

X(t) =—ax(t)—bx(t—h)+cu(t) (6.1.82)
where a, b and c are constant scalars, by employing following memoryless control

u(t) =kx(t) (6.1.83)

where k is a design parameter.
Then closed-loop system is given by

X(t)=—(a—kc)x(t)—bx(t—h) (6.1.84)
Stability conditions (6.1.27b) of Theorem 4 for (6.1.84) are similar to (6.1.62) for h>1.
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2(a-kc+b)—ph—ph (a-kc)b b2
H= (a-kc)b % w0 >0 (6.1.852)
b2 0 % P

or

H|=2(a-ke+b)—ph—ph >0, pu>0, p>0

|H,|=[2(akc+b)—ph — uh]% n—(a-ke)?b? >0 (6.1.85b)
11 1
‘Hs‘ =[H|=[2(a*ke+b)—ph —MhJFMp-Hub“ —Z(a-kc)zb2 >0

Thus, closed-loop system (6.1.84) is asymptotically stable if (6.1.85) hold.
If we consider a case where h is unknown but bounded, then the upper bound of h can be

computed as follows for h>1.
Select pw=p, then from (6.1.85b)

2(a—ke+b)>2u h>0 and ,u<a_];l—c+b where a—kc+b>0.

|| :2(a—kc+b)%—2,u2 —(a—ke)*b>

and %:2(a_kc+b)l—4ﬂ:0
Op h
a—kc+b
' 2 6.1.86
ence L 5 ( |
— 2 _ 20, 212
Then max‘Hz‘z(a ke+b) 22h (a—ke)’b® _
2h

hence
h< %% and the upper bound is found as
— 1 a—kc+b
" G-kob 6.1.87

J2 (a—ke)b ( )

Thus, closed-loop system (6.1.84) is asymptotically stable for any 0 <h <h if (6.1.87) hold.
Note that, design parameter k can be selected such that the upper bound Hz for (6.1.87) greater

than that h, in (6.1.72), i.e. h, > h,.
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6.1.6 Conclusions

We have derived some improved delay-dependent stability conditions for linear time—delay
systems by using Leibniz-Newton formula and augmented, special augmented Lyapunov-
Krasovskii functionals. The stability results are depended on the size of the delay term and are
given in terms of quadratic forms of state and some matrix inequalities, which are more
informative and accurate. Four simple examples are considered systematically to illustrate and
comparison analysis of derived stability conditions. The upper bound of delay term is computed
by solving of quasi-convex optimization problem. Stabilization by memoryless control is
considered as fifth example.

6.2 Delay-dependent stabilization of input-delayed systems by linear control: a new design
methodology

A new design approach based on Lagrange mean value theorem is used for the first time for the
stabilization of multivariable input-delayed system by linear controller. The delay—dependent
asymptotical stability conditions are derived by using augmented Lyapunov-Krasovskii
functionals and formulated in terms of conventional Lyapunov matrix equations and some
simple matrix inequalities. Proposed design approach is extended to robust stabilization of
multi-variable input delayed systems with unmatched parameter uncertainties. The maximum
upper bound of delay size is computed by using simple optimization algorithm. A liquid
monopropellant rocket motor with a pressure feeding system is considered as a numerical
design example. Design example shows the effectiveness of our proposed design approach.

6.2.1 Introduction

Time-delay effect is frequently encountered in oil-chemical systems, metallurgy and machine-
tool process control, nuclear reactors, bio-technical systems missile-guidance and aircraft
control systems, aerospace remote control and communication control systems, etc. The
presence of delay effect complicates the analysis and design of control systems. Moreover,
time-delay effects in the state vector, especially in the control input degrade the control
performances and make the closed—loop stabilization problem challenging. For better
understanding of time-delay effect properties let us briefly analyze the existing design
methodologies. There are three basic control design methodologies for the stabilization of input
delayed systems:

1) Smith predictor method 2) Reduction method
3) Memoryless control approach.

A common design method of input-delayed systems is well known Smith predictor control to
cancel the effect of time-delay. Smith predictor is a popular and very effective long delay
compensator for stable processes. The main advantage of the Smith predictor control method is
that, the time-delay is eliminated from the characteristic equation of the closed-loop system.
Classical Smith predictor was suggested by Smith [26], [27]. Modified Smith predictor schemes
have been advanced by Marshall [28], Aleviskas and Seborg [29], Watanabe and Ito [30],
Watanabe, Ishiyama and Ito [31], Al-Sunni and Al-Nemer [32], Majhi and Atherton [33], etc.

Note that Smith Predictor removes only the time—delay from closed—loop while it is remained
in feed-forward path. Therefore, it is also an input-delayed system. An extension of the Smith
predictor method for the MIMO systems with state and input delays is considered by Alevisaxis
and Seborg [29]. The control algorithm in a Smith Predictor is normally a PI-controller. The D—
part normally is not used since the prediction is performed by the dead—time compensation.
Prediction through derivation is not suitable when the process contains a long dead— time.
Replacing a PID-controller with a Smith predictor gives a drastic increase in operational
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complexity. This is the main reason why most processes with long time—delay are still
controlled by PI-controllers. A modified Smith predictor based on industrial PI-controller is
designed by Hagglund [34]. A modified Smith predictor and controller for unstable processes
with time—delay are developed by DePaor [35]. Modified Smith predictor control for
multivariable systems with delays and immeasurable disturbances is extended by Watanabe,
Ishiyama and Ito [31]. Modified Smith predictor and controller design procedure for unstable
processes is proposed by Majhi and Atherton [33]. A Smith predictor fuzzy logic based PI-
controller design for processes with long dead—time is proposed by Al-Sunni and Al-Nemer
[32].

The second important control design method of input—delayed systems is the reduction method
that was suggested by Kwon and Pearson [36].

This control strategy has been shown to overcome some of inherent problems of the
conventional Smith predictor method. For example, unstable system can be stabilized and the
effects of the initial conditions are taken into consideration. The reduction method, however,
suffers from a weakness that the complete reduction to a delay free system is only possible with
an exact model of the system. Reduction method is extended to time—varying system with
distributed delays by Arstein [37]. A new robust stabilizing controller for multiple input—
delayed system with parametric uncertainties by using a modified reduction method is proposed
by Moon, Park and Kwon [38]. However, an industrial implementation of reduction method
controllers is much complicated than conventional method.

The third design approach to stabilization of input-delayed systems is so-called memoryless
control method, which is similar to the conventional linear control method. Such controllers
have feedback of the current state only, are designed to delay—independent stabilization of
input—delayed systems by using Lyapunov—Krasovskii functional method, for example, see
Choi and Chung [38], Kim, Jeung and Park [40], Su, Chu and Wang [41], etc. However, this
approach is conservative when the actual size of the delay is small. In fact, information on the
size of the delay is often available in many processes. Hence, by using delay information and
past control history as well as the current state delay—dependent controllers may provide much
better performance than memoryless controllers.

In analysis and design of time-delay systems, in general, the Lyapunov-Krasovskii functional
method is commonly used. Recent advances in time-delay systems are presented by Richard
[42], Fridman and Shaked [43], Jafarov [44], Niculescu and Gu [45], Niculescu [46], Mahmoud
[47], Gu, Kharitonov and Chen [48], Boukas and Liu [49]. Some sufficient delay-dependent
stability conditions for linear delay perturbed systems are derived using exact Lyapunov-
Krasovskii functionals by Kharitonov and Niculescu [50]. Several new LMI delay-dependent
robust stability results for linear time-delay systems with unknown time-invariant delays by
using Pad¢é approximation are presented by Zhang, Knospe and Tsiotras [51]. Both delay-
independent and delay-dependent robust stability LMI’s from conditions for linear time-delay
systems with unknown delays by using appropriately selected Lyapunov-Krasovskii functionals
are systematically investigated by Zhang, Knospe and Tsiotras in another paper [52]. Stability
of the internet network rate control with diverse delays based on Nyquist criterion is considered
by Tian and Yang [53]. Improved delay-dependent stability conditions for time-delay systems
in terms of strict LMI’s avoiding cross terms are developed by Xu and Lam [54]. A new state
transformation is introduced to exhibit the delay-dependent stability condition for time-delay
systems by Mahmoud and Ismail [55]. Determining controllable sets from a time-delay
description is given by Rhodes and Morari [56].

Resuming the brief analysis of references concerning the existing design approaches, it can be
concluded that time-delay systems are intensively investigated recently by researchers in light
of the above mentioned three directions. However, a new direction to stability analysis and
controller design of time-delay systems is not developed. In this paper, we have attempted to
present for discussion a principle new design approach to analysis and design of time-delay
systems. Introduced new design approach may open a new direction in this field. Proposed
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design approach based on Lagrange mean value theorem is used for the first time for the
stabilization of multivariable input delayed system. The delay—dependent asymptotical stability
conditions are derived by using augmented Lyapunov-Krasovskii functionals and formulated in
terms of conventional Lyapunov matrix equations and some simple matrix inequalities.
Proposed design approach is extended to robust stabilization of multi-variable input delayed
systems with unmatched parameter uncertainties. The maximum upper bound of delay size is
computed by using simple optimization algorithm. A liquid monopropellant rocket motor with a
pressure feeding system is considered as a numerical design example. Design example shows
the effectiveness of our proposed design approach.

6.2.2 Delay-dependent stabilization by linear control

Let us consider the following control input-delayed multivariable system of the form:
x(t)= Ax(t)+ Bu(t-h), t>0
u(t)=4¢(1), -h<t<0 (6.2.1)

where x(¢)is the measurable state n-vector, u(#)is the control input m—vector, in general
m<n, A is the unstable (nxn)- matrix and B is the (nxm)- matrix of full rank, ¢(¢) is

known initial control function on interval [—A,0], #>0is a constant time-delay. If we
consider a case where / is an unknown, then we assume that / is bounded 0 < /4 < h.
We assume that time—delay system is completely state controllable [57].

This design method is based on the Lagrange mean value theorem familiar from classical
Calculus [58], [59]. Remember that Lagrange mean value theorem is stated as follows:

S(b)-f(a)
b—a

where f(x) is a continuous function at every point of the closed interval [a, b] and

=f'(&), a<&<b (6.2.2)

differentiable at every point of its interior (a, b) or in terms of delayed control input

u(t —h) = u(t) — hi(6) (6.2.3)

where @ isapointin t—h <60 <t.

After introducing the 6 parameter, the constructive delay-dependent asymptotical stability and
robustly asymptotically stable conditions can be derived by using the augmented Lyapunov-
Krasovskii functionals.

Now, after preparing the necessary background we can present a new continuous control design
methodology for input-delayed systems with known or unknown but bounded delays.
Substituting (3) into (1), the input-delayed system can be transformed to following system:

x(t) = Ax(t)+ Bu(t) — Bhu(6) (6.2.4)
Now we can utilize the conventional linear controller

u(t) = —Gx(t) (6.2.5)

where G is the gain (7 x 1) matrix to be selected. Then,
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(t) = (A— BG)x(t) + hBGx(0) (6.2.6)

where
x(0) = Ax(0) + Bu(0 — h) = Ax(0)—BGx(6 - h) (6.2.7)
since  u(@—h)=-Gx(6 - h) (6.2.8)

Hence, we have the following transformed state delayed multivariable system
(1) = A x(t) + hBGAx(0) — h(BG)* x(0 — h) (6.2.9)

where A= A—BG. G can be selected for example by pole placement, such that 4 has
desirable eigenvalues.

As seen from (6.2.9), the state equation depends on:

1) current state x(¢), 2) near past history of the state x(&), 3) far past history of the state
x(@—h).

Therefore, the problem of stabilization of system (6.2.9) is not simple.
Now, we need to make the following assumption.

Assumption 1: Time-delay parameter @ is a time-dependent function and norm-bounded such
that

0<1-n<6(t)<n<l (6.2.10)

where 7 is a scalar.

Note that assumption similar to (2.10) is used by many authors, for example, by lkeda and
Ashida [60], Su and Chu [61], Su, Ji and Chu [62], Wu, He, She and Liu [63], Kim [64] etc.
Stability results for transformed time-delay system (6.2.9) by using augmented Lyapunov—
Krasovskii functionals can be formulated as follows.

Theorem 6: Suppose that Assumption 1 holds. Then the transformed time-delay system (6.2.9)
driven by linear controller (6.2.5) is delay-dependent asymptotically stable, if there are design
parameters G and positive definite symmetric matrices P, R and T such that the following
conditions are satisfied:

-0 hD ~hC 0

H= _thTr ”R_((l)_”)s —(1—077)13 8 <0 (6.2.11)
0 0 0 T

PZ+ZTP+S+T:—Q<O (6.2.12)

0<R<@S ; (6.2.13)

where D = PBGA and C = P(BG)*.

Proof: Choose augmented Lyapunov—Krasovskii functionals candidate as follows:
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4

V(x(t),x(6),x(0 —h),x(t —h)) = x" (£)Px(t) + j x (O)Rx($)d<¢

6-h

+[x"(©O)Sx(&)dE+ [ X (@) Tx(p)dg (6.2.14)
4 t—h

where P, R, S and T are some positive definite symmetric matrices.

The time derivative of (6.2.14) along the state trajectory of (6.2.9) can be calculated as follows:

V =x" (O)Px(t)+ X" ())Px(t) + 6(t)| x" (O)Rx(0) —x" (O~ h)Rx(0— ) |
(6.2.15)
+x7 (0)Sx(1) — 6(1)x" (0)Sx(0) + x (1) Tx(t) — x" (t — h)Tx(t — h)

=xT(t)((PA+A P)x(t)+2hx" (t)PBGAx(8) - 2hx" (£)P(BG)*x(0 — h)
+0()x" (O)(R - S)x(0)—O(t)x" (6 —h)Rx(0 —h)+x" (t)(S + T)x(t) - x" (t — h)Tx(t — h)

Since 0<1-7<0()<n<l
Then,

V<xT(t)(PA+A P+S+T)x(t)+2hx" (t)PBGAx(0) - 2hx" (t)P(BG)? x(6 — h)

+1x7 (O)Rx(8) — (1-1)x" (0)Sx(0) — (1 —17)x" (6 — h)Rx(0 — k) — x" (¢ — W)Tx(t — h)

xty [ -0 hD ~hC 0 |[x(0)

| x) DT pR-(1-n)S 0 0 || x(6)

| x(@—h)| |-hCT 0 ~(1-mR 0 ||x(@—h)
x(t—h) 0 0 0 =T ||x(t—h)

=z ()Hz(t) < -2

‘min

(H)|z0)| <0 (6.2.16)

where z(t) = [x(t) x(@) x@-h) x(t—h)]T , D=PBGA and C = P(BG)?, if conditions
(6.2.11), (6.2.12) and (6.2.13) are satisfied.

Note that, matrix A has its own quadratic structure H# =MHM" , where

-0 0 0 0 I hD[nR-(-mST" hC[(-mR]" 0
H=|0 nR=(1-ms 0 01, p=lo I 0 0
0 0 —(1—77)R 0 0 0 I 0
0 0 0 -T 0 0 0 p
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Since M is a nonsingular and /, <0 because its leading principle elements are always negative

then H <0 . Therefore, condition (6.2.11) is feasible. Thus, the transformed time-delay system
(6.2.9) with known delay is delay-dependent asymptotically stable.

If we consider a case where the time-delay term is unknown but bounded 0 < 4 < h then we
can solve the following convex optimization problem:

OP: maximize h
Subject to conditions (6.2.11)-(6.2.13)
and P, R, S, T>0 (6.2.17)

which is a quasi — convex optimization problem. Hence it is possible to compute the maximum

upper bound h using efficient convex optimization algorithms by Boyd, Ghaoui, Feron, and
Balakishnan [65], etc.

Theorem 6 is proven.

6.2.3 Robust stabilization of input-delayed systems with parameter uncertainties

The design approach advanced in section 2 can be extended to robust stabilization of input-
delayed systems with parameter uncertainties. State equations of this class of systems can be
presented as follows:

%(t) = (A + AA(o) )x(t) + Bu(t — h)
u)=¢t), —-h<t<0 (6.2.18)

where in addition to (6.2.8) AA(oc) are the parameter uncertainties. It is assumed that
max”AA(O')” <a, o is an uncertain element.
Substituting (6.2.3) with (6.2.5) into (6.2.18) we have:

©(t) = Ax(t) + A()x(t) + hBGAx(0) +hBGAA(c)x(0) - h(BG)* x(0 - h) (6.2.19)

Now, delay—dependent robust stability conditions for transformed time-delayed system with
parameter uncertainties can be formulated as follows.

Theorem 7: Suppose that Assumption 1 holds. Then, the transformed time—delay system with
parameter uncertainties (6.2.19) driven by linear controller (6.2.5) is robustly asymptotically
stable, if there are the design parameters G and positive definite symmetric matrices P, R, T
and S such that the following conditions are satisfied:

-0 hD+aol,, (PBG)I —hC 0
7 —(1—
e hD" +al,..(PBG)I nR—(1-n)S 0 0 <0 (6.2.20)
—hCT 0 ~1-mMR 0
0 0 0 -T
PA+A P+S+T+al,, (P)=-0<0 6.2.21)
0<R< (1:7—’7)5’ (6.2.22)
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where D = PBGA and C = P(BG)*.

Proof: Again consider an extended Lyapunov—Krasovskii functional of the form (6.2.14).
The time derivative of (6.2.14) along (6.2.19) is given by:

V= x" (t)(PA+ A P)x(t)+2x" (£)PAA(c)x(t) + 2hx" (1)PBGAx(0)
+2hx" (£)PBGAA(c)x(0) — 2hx" (t)P(BG)* x(6 — h) + 6(t)x” (O)(R - S)x(6)

—0(t)x" (0 - h)Rx(0 — h)+ x" (t)(S + T)x(t) — x" (t — h)Tx(t — h)

(6.2.23)

Since

0<l-n<0()<n<l (6.2.24)
X7 () PAA(0)x(t) < @Ay (P)XT (£)X(2) (6.2.25)
X" (t)PBGAA(G)x(0) < oty (PBG)XT (£)x(1) (6.2.26)

Then (6.2.23) can be evaluated as follows:

x) T 0 hD+ah, . (PBGI  —hC 0 [x(t)
| x(9) hD" +al,, (PBG)I nR—-(1-m)S 0 0 ||x(0)
| x(0-h) —hC” 0 ~1-mR 0 ||x(@-h)
x(t—h) 0 0 0  -T||x¢-h)
= 27 (()Hz(t) <~ Ay (HD) |2(0)| <0 (6.2.27)

where z(t)=[x(t) x(6) x(0—h) x(t—h)]T , if the conditions (6.2.20), (6.2.21) and (6.2.22) are
satisfied.
Note that, matrix A has its own quadratic structure H=MH M" , where

0 0 0 0
0 nR-(1-mS 0 0
7=\ 9 0 —1-mR 0 |
0 0 0 T
1 D[pR-(-n)ST" hC[a-nR]" 0
v| I 0 0
0 0 I 0
0 0 0 I
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where D = hD+al

max

(PBG)I

Since M is a nonsingular matrix and /, <0 due to the fact that its leading principle elements

are always negative, then H <0. Therefore, condition (6.2.20) is feasible. Thus, the
transformed time-delay system (6.2.19) with known delay is delay-dependent asymptotically
stable.

If we consider a case where time-delay term is unknown but bounded 0 < /& < h then we can
solve the following convex optimization problem:

OP: maximize h
Subject to conditions (6.2.20)-(6.2.22)
and P, R, S, T>0 (6.2.28)

which is a quasi — convex optimization problem. Hence it is possible to compute the maximum

upper bound h using efficient convex optimization algorithms by Boyd, Ghaoui, Feron, and
Balakishnan [65], etc. Theorem 7 is proven.

6.2.4 Numerical example 6: rocket motor control

Let us consider a liquid monopropellant rocket motor with a pressure feeding system, which is
more practical and complex example. This system is not delay-independently stabilizable either.
Original complete dynamics model of rocket motor is given by Fiagbedzi and Pearson (1986)
[66]. A linearized version of the feeding system and combustion chamber equations assuming
non-steady flow is taken from [65] and Moon, Park, Kwon and Lee (2001), [66]:

i(t) = Ax(£)+ Ax(t—h)+ Bu(f) (6.2.29)

T . . . . .
where x(¢)= [¢(t) (@) u(t) l//(l‘):| ; @(¢) is the non-dimensional instantaneous pressure in
the combustion chamber, 4 (¢) is the non-dimensional instantaneous mass flow upstream of the
capacitance, w(f) is the non-dimensional instantaneous mass rate of injected propellant and

w(¢) is the non-dimensional instantaneous pressure at the place in the feeding line. % is the
reduced time lag in steady operations, £ <1.

u(t) Jp#;ppl) (6.2.30)

is the non-dimensional pressure control input.

00 0 0 1010 0000
00 0 -1 0 000 0100
A_—10—11’A‘_0000’B_0000 (6.2.31)
0 1 -1 0 0 000 0000

System Equation (6.2.29) can be converted to our input-delayed system form as follows.
Substituting u(¢) = —Gx(¢) into (6.2.29) we have

i(t) = (A— BG)x(t) + A x(t - h) (6.2.32)
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Linear controller (6.2.5) computational algorithm for input delayed system (6.2.1) with stability
conditions (6.2.11), (6.2.12), (6.2.13) can be fulfilled by the following MATLAB programming
steps:

clear; clc;

A =[0000; 00O -1;
-10-11; 01 -1 0];

Al =[-1010; 00 0 O;
0O00O0; 000 0O];

B =[00O0O0; 010 0;
00O0O0; 00O 0O];

Lamda = eig(A);

Poles = [-0.4+1.27i; -0.4-1.27i;
-0.21; -.1];

G = place(A,Al1,Poles);

aa = 6.26;

h = 0.244;

eta = 0.005;

R = 0.5*eye(4);

Q = 0.9*eye(4);

S = aa*(eta*R)/(1l-eta);

Q1 = eye(4);

T = Q1 - aa*S - Q;

eQl = aa*S + T + Q;

Ahat = A - (B+A1)*G;

P = lyap(eQl,Ahat);

LamdaP = eig(P);

D = P*A1*G*A;

© = P*(AL1*G*A1*G);

A1*G;

o0 = eye(4)-eye(4d);

H = [-Q h*D -h*C 00;
h*D* eta*R-(l1-eta)*S o0 00;
-h*C" o0 -(1-eta)*R 00;
o0 o0 o0 -T];

Heig = eig(H)

Computational results are

02151 + 1.3071i 20.4000 + 1.2700i
02151 - 1.3071i -0.4000 - 1.2700i
io(A) = . Poles = ,
© eg=| 45608 oles =1 02100
0 20.1000
20.0550 -0.0023 -0.0340 0.3268
o 0 0 0 0
T 0.0550 0.0023 0.0340 -0.3268
0 0 0 0
e aa=6.26
e J_ =0.2440 sec.

max
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7 =0.0050

0.5000 O 0 0
0 0.5000 O 0

R= 0 0 05000 0 |
0 0 0 0.5000

00157 0 0 0

G 0 00157 0 0
a 0 0 0.0157 0l

0 0 0 00157

0.9000 0 0 0

0 0.9000 0 0

Q:

0 0 0.9000 O
0 0 0 0.9000

00015 0 0 0 1 0 0 0
- 0 00015 0 0 o-| 0100
B 0 0 0.0015 0 | 0 0 1 of
0O 0 0 00015 00 0 1
0.0550 0.0023 0.0340 -0.3268
B 0 0 0 05000
05000 0  0.5000 -0.5000
0 -0.5000 05000 0
0.2000 + 0.6350i 20.0037 -0.0359 0.0322 0.0035
_ 0.2000 - 0.6350i 0 0 0 0
cigP)=\" 0500 o D=l 00340 203268 02928 00317
0.1050 0 0 0 0
0.0007 0.0000 0.0004 -0.0040
o 0 0 0 0
“| 00061 0.0003 0.0037 -0.0359|
0 0 0 0
0.1100 0.0047 0.0681 -0.6536
0 0 0 0
* =
47G 0 0 0 0
0 0 0 0
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-0.9000 0 0 0 -0.0009 -0.0088 0.0079 0.0009 -0.0002 -0.0000 -0.0001 0.00100 0 0 0
0 0900 0 O 0 0 0 0 0 0 0 0 0 o0 0 0
0 0 09000 0 -0.0083 -0.0797 0.0714 0.0077 -0.0015 -0.0001 -0.0009 0.0088 0 0O 0 0
0 0 0 09000 0 0 0 0 0 0 0 0 0 0 0 0
-0.0009 0 -0.0083 0 -0.0132 0 0 0 0 0 0 0 0 0 0
-0.0088 0 00797 0 0 00132 0 0 0 0 0 0 0 o0 0 0
00079 0 00714 O 0 0 00132 0 0 0 0 0 (U 0 0
I 0.0009 0 00077 O 0 0 0 -0.0132 0 0 0 0 0 0 0 0
-0.0002 0 -0.0015 0 0 0 0 0 -04975 0 0 0 0 o0 0 0
-0.0000 0 -0.0001 0 0 0 0 -04975 0 0 0 0 0 0
-0.0001 0 -0.0009 0 0 0 0 0 0 0 04975 0 0 o0 0 0
0.0010 0 0.0088 0 0 0 0 0 0 0 004975 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -0.0015 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.0015 0O 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 00015 0
L 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 -0.0015 |
o eig(H)= -0.9132 0.9 -0.9 0.9 -0.4975 -0.4975 -0.4975 -0.4973

-0.0132 -0.0131 -0.0131 -0.0015 -0.0015 -0.0015 -0.0015 -0.0001

6.2.5 Conclusions

In this paper, a new design approach based on Lagrange mean value theorem is used for the
first time for the stabilization of multivariable input delayed system by linear controller. The
delay—dependent asymptotical stability conditions are derived by using augmented Lyapunov-
Krasovskii functionals and formulated in terms of conventional Lyapunov matrix equations and
some simple matrix inequalities. Proposed design approach is extended to robust stabilization of
multi-variable input delayed systems with unmatched parameter uncertainties. The maximum
upper bound of delay size is computed by using simple optimization algorithm. A liquid
monopropellant rocket motor with a pressure feeding system is considered as a numerical
design example. Design example shows the effectiveness of our proposed design approach.

6.3 Delay-dependent stabilization of single input-delayed systems by continuous sliding
mode control: a new design methodology

The Smith predictor method, reduction method and reduction method combined with classical
discontinuous sliding mode control approaches are discussed and presented as some
preliminary results. A new continuous sliding mode control design methodology based on
Lagrange mean value theorem is proposed for stabilization of single input delayed systems. The
Lagrange mean value theorem as a basic theorem of calculus is used for the design of linear
sliding mode time-delay controller for the first time. This controller satisfies the sliding
condition using a Zhou and Fisher type continuous control law eliminating the chattering effect.
The constructive delay-dependent asymptotically stable sliding conditions are obtained by
using the augmented Lyapunov-Krasovskii functionals and formulated in terms of simple
(4x4)-matrix inequality with scalar elements. Developed design approach can be extended to
robust stabilization of sliding system with unknown but bounded input delay. These
contributions are the main results of the paper. Four analytical and numerical design examples
are considered to illustrate the various design approaches. The maximum upper bounds of delay
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size can be found by using simple optimization algorithms. Helicopter hover control is
considered as fifth design example for illustrating the performances of smooth sliding mode
approach and Smith predictor control. Unstable helicopter dynamics are successfully stabilized
by using linear sliding mode time-delay controller. For example, settling time is about 20 sec.
Smith predictor control result, also, is very well, because for considered example model
parameters are known. Therefore, simulation results confirmed the effectiveness of proposed
design methodology. Apparently, the proposed method has a great potential in design of time-
delayed controllers.

6.3.1 Introduction

Time-delay effect is frequently encountered in oil-chemical systems, metallurgy and machine-
tool process control, nuclear reactors, bio-technical systems missile-guidance and aircraft
control systems, aerospace remote control and communication control systems, etc. The
presence of delay effect complicates the analysis and design of control systems. Moreover, time
delay effects in state vector, especially in control input degrades the control performances and
make the closed—loop stabilization problem challenging. A common design method of input-
delayed systems is well known Smith predictor control to cancel the effect of time-delay. Smith
predictor is a popular and very effective long delay compensator for stable processes. The main
advantage of the Smith predictor control method is that, the time-delay is eliminated from the
characteristic equation of the closed-loop system. Classical Smith predictor was suggested by
Smith [68], [69]. Modified Smith predictor scheme’s have been advanced by Marshall [70],
Aleviskas and Seborg [71], Watanabe and Ito [72], [73], Al-Sunni and Al-Neymer [74], Majhi
and Atherton [75].

The other important control design method of input-delayed systems is the reduction method
that was suggested by Kwon and Pearson [76].

Recently several new variable structure control design methods for stabilization of various
classes of systems without time-delay are developed, for example by Wang, Lee and Juang
[77], Lee and Xu [78], Cao and Xu [79], [80], Choi [81], Edwards, Spurgeon and Hebden [82],
Sabanovic, Fridman and Spurgeon [83], Jafarov [84]-[86], Yeh, Chien and Fu [87], Singh,
Steinberg and Page [88], Koshkouei and Zinober [89]. But, there is no a large number of papers
concerning the problem of stabilization of time-delay systems by variable structure control, for
example see Shyu and Yan [90], Yan [91], Luo, De La Sen and Rodellar [92], Gouaisbaut,
Dambrine and Richard [93], Richard [94], Perruquetti and Barbot [95], Jafarov [96], [97], Li
and De Carlo [98], Gouaisbaut, Blango and Richard [99], Koshkouei and Zinober [100] etc. In
analysis and design of time-delay systems by sliding mode control the Lyapunov-Krasovskii
functional method is commonly used. Recent advances in time-delay systems are presented by
Richard [94], Fridman and Shaked [101], Jafarov [102], Niculescu and Gu [103], Niculescu
[104], Mahmoud [105], Gu, Kharitonov and Chen [106], Boukas and Liu [107]. Some
sufficient delay-dependent stability conditions for linear delay perturbed systems are derived
using exact Lyapunov-Krasovskii functionals by Kharitonov and Niculescu [108]. Several new
LMI delay-dependent robust stability results for linear time-delay systems with unknown time-
invariant delays by using Padé approximation are presented by Zhang, Knospe and Tsiotras
[109]. Both delay-independent and delay-dependent robust stability LMI’s from conditions for
linear time-delay systems with unknown delays by using appropriately selected Lyapunov-
Krasovskii functionals are systematically investigated by Zhang, Knospe and Tsiotras in
another paper [110]. Stability of the internet network rate control with diverse delays based on
Nyquist criterion is considered by Tian and Yang [111]. Improved delay-dependent stability
conditions for time-delay systems in terms of strict LMI’s avoiding cross terms are developed
by Xu and Lam [112]. A new state transformation is introduced to exhibit the delay-dependent
stability condition for time-delay systems by Mahmoud and Ismail [113].
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Variable structure control is often used to handle the worst-case control environment:
parametric perturbations, external disturbances with knowledge of only the upper bounds etc.
Sometimes we may come up with more appropriate control approaches such as incorporating
VSC with linear control, time-delay control etc. It is well known that classical sliding mode
control uses a discontinuous control action to drive the state to the origin along the reaching and
sliding paths and is insensitive to parametric uncertainties and external disturbances. However,
the control chattering due to the discontinuity in control law sometimes is undesirable. The
continuous sliding mode control approach satisfies the sliding conditions using a continuous
control law without requiring discontinuous switching in the controller. Therefore, it retains the
advantages of sliding control but without the chattering phenomena. Such approach is used by
Zhou and Fisher [114], Shtessel and Buffingtonn [115] etc. Continuous sliding mode control
concept is discussed in details and its comparison analysis with the conventional discontinuous
sliding mode control by Zhou and Fisher [114].

Note that VSC cannot be directly applied to the control of input-delayed system. Feng, Mian
and Weibing [116], Hu, Basker and Crisalle [117] have been successfully used the reduction
method combined with variable structure control for stabilization of certain and uncertain
multivariable input-delayed systems with known delays.

In this topic, the Smith predictor method, reduction method and reduction method combined
with classical discontinuous sliding mode control approaches are discussed and presented as
some preliminary results. A new sliding mode control design methodology for the single input
delayed systems with known or unknown but bounded delays is developed. This design method
is based on the Lagrange mean value theorem, which is used for the first time for the
stabilization of input-delayed systems. Proposed linear sliding mode time-delay controller also
satisfies the sliding condition, but in contrast to classical variable structure control, uses Zhou
and Fisher type of continuous control law without requiring discontinuous switching in the
controller. Therefore, undesired control chattering in this case is avoided.

The constructive delay-dependent asymptotical stability and robustly stable sliding conditions
are obtained by using the Lyapunov-Krasovskii functional method and formulated in terms of
some matrix inequalities. Hence, it is possible also to compute the maximum upper bound of
the allowable time-delay % using efficient convex optimization algorithms. Four analytical and
numerical design examples are considered for illustrating the various design approaches. The
maximum upper bound of delay size is computed by using simple optimization algorithm.
Helicopter hover control is considered as fifth design example for illustrating the performances
of smooth sliding mode approach and Smith predictor control. Unstable helicopter dynamics is
successfully stabilized by using linear sliding mode time-delay controller. For example, settling
time is about 20 sec. Smith predictor control result, also, is very well, because for considered
example model parameters are known. Therefore, simulation results confirmed the
effectiveness of the proposed design methodology.

6.3.2 Preliminary results and problem statement

For the better understanding the Smith predictor control, reduction method and reduction
method combined with variable structure control design approaches let us consider the
following single input-delayed system

x(t) = Ax(t) + bu(t — h) (6.3.1)
where x(¢) is the measurable n-state vector, u(t) is the scalar control input, A is a constant real
(nxn) matrix, b is the constant n-vector, 4 > 0 is a time-delay.

Smith predictor method: Modified Smith predictor control scheme represented in state-space
equation form is shown in Figure 1 where r(¢) is the reference vector, Ax(¢) is the state error

292



vector. From Figure 1, the state-space equation of controlled system can be presented as
follows:

x(t) = Ax(t) + bu(t) + bk r(t — h) (6.3.2)

where it is assumed that the model parameters A

m?’

b,, h, exactly coincide with the process

parameters A, b and h. Therefore, the time-delay is moved outside the minor loop, which means
that the design problem can be considered for delay free system.
Thus, for example a linear controller:

u(t) = —k"x(2) (6.3.3)

where k is the gain n-vector parameter, can be designed by using one of the known design
methods, for example by pole placement method. Then, the closed-loop delay-free system with
desirable poles is given by

#(1) = (A - bk )x(2) (6.3.4)

Note that the time response of closed-loop system (6.3.2) depends on delayed input reference
function r(t-h). Therefore, Smith predictor moved the time-delay from minor loop to major
loop. Moreover, the Smith predictor needs to exact model of the process and it is sensitive to
parameter variations. Details of advantages and disadvantages of Smith predictor design
methods are discussed in above-mentioned references [70]-[75].

Reduction method: In according to this method, if an unknown delay term is constant but

bounded 0<h<h, then delay-dependent stability conditions can be derived by using the
following linear state transformation [76]:

2(t) = x(£) + j MO 1(0)d O (6.3.5)

h
for input-delayed system:
x(t) = Ax(t) + byu(t) + bu(t — h) (6.3.6)
where b, and b, are the constant vectors.

Then, (6.3.6) can be reduced to following delay-free system:
2(t) = Az(£) + (b, + e b )u(t) = Az() + bu(t) (6.3.7)

where b= by +e b, .

This system can be stabilized by using delayed controller:

u(t) =—k"z(1) (6.3.8)
Choose a Lyapunov function candidate as:

V(z(t)) = z" (t)Pz(2) (6.3.9)

where P is a positive definite symmetric matrix to be selected.
Then the time-derivative (6.3.9) for (6.3.7), (6.3.8) can be found as:

V=2 (O[P(A-bk") +(A-bk") Plz(t) = -z (£)0z(¢) < 0 (6.3.10)
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if the following Lyapunov matrix equation holds:

P(A-bk")+(A—bk"Y P=-0 <0 (6.3.11)
where Q is a positive definite symmetric matrix.

Thus, controller (6.3.8) stabilizes (6.3.7) if the condition (6.3.11) holds. If we consider a case
where delay term is uncertain but bounded 0 < 2 < & then we can solve the following convex

optimization problem:

OP: maximize h

Subject to LMI (6.3.11)

and P>0 (6.3.12)
which is a quasi-convex optimization problem. Hence it is possible to compute the maximum

upper bound h using efficient convex optimization algorithms by Boid, Ghaoui, Feron and
Balakrishnan [118].

In order to compute the maximum upper bound h let us consider the following simple
example.

Example 7: Consider the first order input-delayed system
xX(t)+ ax(t) = bu(t — h) (6.3.13)

where a and b are some constant scalars.
By using a linear state transformation:

2(t) = x(t) + j e O by(0)do (6.3.14)

t—h

input-delayed system (6.3.13) reduces to:

2(t) = —az(t) + e bu(t) (6.3.15)

which can be stabilized by linear delayed controller

u(t) =kz(t) (6.3.16)

Choosing a Lyapunov function as

V=lzz(t) (6.3.17)
2

the time-derivative of (6.3.17) for (6.3.15) can be found as

V =—(a—e"bk)z* (1) (6.3.18)

Hence, the stability condition for (6.3.15) and (6.3.16) with known delay h>0 is trivial:

a—e“bk >0 (6.3.19)

If we consider a case where h is unknown but bounded 0 < 4 < 4 then the upper bound can be
obtained from (6.3.19) as follows

B In-%

h=—bk (6.3.20)

a
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Thus, transformed system (6.3.15) is robustly stable for any 0 < & < h with maximum upper
bound # (6.3.20).

Reduction method combined with discontinuous VSC: Now, let us demonstrate how this
idea can be used for the control of single input-delayed system of form (6.3.6) with matched
external disturbances:

x(t) = Ax(t) + byu(t) + bu(t—h) + £ (1) (63.21)

where f(¢) is an unknown but norm-bounded and matched external disturbance:
fo=bf0;  [fo|<s (63.22)

f(t) is a scalar function, /o 1s a given scalar.

By using reduction method input-delayed system (6.3.21) can be transformed to the delay free
system (6.3.23).

2(t) = Az(1) + bu(t) + b [ (¢) (6.3.23)
Then, we can utilize the following simple classical discontinuous sliding mode control

u(t) = —k" z(t) - osign(s(t)) (6.3.24)
s(t)=c"z(1) (6.3.25)

where s(¢) is the switching function, ¢ is a design n-vector, k is a relay gain vector, & is a

scalar to be determined. The sufficient conditions for the existence of the sliding mode are
formulated in the following theorem.

Theorem 8: Suppose that the matching condition (6.3.22) holds. Then an asymptotically stable
sliding mode can always be generated on the sliding manifold s(¢) = 0 (6.3.25) defined for the

transformed system (6.3.23) driven by variable structure controller (6.3.24) if the following
conditions are satisfied:

e’ (A—EkT)= A,cT (6.3.26)
"b(6-f,)>0 (6.3.27)

where A, is one of the left eigenvalues of the stable closed loop system matrix (A —bkT )
Proof: The time derivative of the Lyapunov function candidate
1
V(s@t))==s*(t 6.3.28
(s0))=55°® (63.28)
along the trajectory of the system (6.3.23) can be calculated as follows:

V =s(0)s(t) = s(t)c" 2(¢) = s(t)[c" Az(t) — " bk z(t) - bSsign(s(t))+cT b f ()]

= s(t)c” (A —bk" )z(t) ~TBS|s()|+<Tbf(1)s(r) (6.3.29)
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Now we can present the switching vector ¢’ corresponding to one of the left eigenvector of the
closed loop system matrix (A —ka) as stated in (6.3.26).
Note that, design of the plane s(¢) = ¢’ z(t) = 0 does not imply assigning the eigenvalue A, it

appears in proof of the theorem only and may take an arbitrary value as pointed by Ackermann
and Utkin [119]. Then (6.3.29) reduces to:

V(6)< A,52(0) =" B[S — £,) | s(1)] (6.3.30)
or
sOSE)<—u4 |s (H)[<0 (6.3.31)

since 4,s5%(t)< 0; where 1 =c" b(S - f.) 1s a positive constant. Then, reaching time can
be evaluated approximately as:

1, <10 6.3.32
‘ ( )

Therefore, the sliding surface is reached in finite time. In other words, the controller exists and
makes the manifold s(¢) =0 asymptotically stable and globally attractive in finite time. This

ends the proof.
If we consider a case where time-delay is uncertain but bounded 0 < 4 < A& then we can solve
the following convex optimization problem:

OP: maximize h
Subject to conditions (6.3.26), (6.3.27) (6.3.33)

In order to compute the maximum upper bound i let us consider the following simple
example.

Example 8: Again consider simple input-delayed system (6.3.13) transformed to (6.3.15).
Define the classical relay controller and switching function as:

u(t) = ksign(s(t))
(6.3.34)

s(t) =cz(t) (6.3.35)

where k and ¢ are design constants.
Closed-loop system can be written as

2(t) = —az(t) + e” bksign(s(t)) (6.3.36)
Sliding condition for (6.3.36) is given by

s()$(t)=—as* (1) + e cbk | s(t) | < (e cbk — a)s* () < 0 (6.3.37)
if e”cbk—a<0. (6.3.38)

Hence the maximum upper bound h can be obtained as:
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h = —cbk (6.3.39)

and, (6.3.36) is robustly stable for any 0 < /& < h with the upper bound (6.3.39).

Thus, summarizing above mentioned design approaches we can conclude that these
methods are very useful for many cases, but they cannot be directly used to treat the
input-delayed systems. Therefore, a question arises whether it is possible to consider
direct design of input-delayed system.

In this section, a new sliding mode control design methodology for the single input-
delayed systems with known or unknown but bounded delays is proposed. This design
method is based on the Lagrange mean value theorem.

Remember that Lagrange mean value theorem [120], [121] is stated as follows

S(b)—f(a)
b—a

where f(x) is a continuous at every point of the closed interval [a, b] and differentiable at

=f'(&), a<&<b (6.3.40)

every point of its interior (a, b) or in terms of delayed control input
u(t—n)=u(t)—hu(@) (6.3.41)

where @ isapointin t—h<0<t.

After introducing the € parameter, the constructive delay-dependent asymptotical stability and
robustly stable sliding conditions can be derived by using the augmented Lyapunov-Krasovskii
functionals method. Hence, it is possible to compute the maximum upper bound of the
allowable time-delay /4 using efficient convex optimization algorithms. Analytical and
numerical design examples are considered to illustrate our design approach. The maximum
upper bound of delay size is computed by using simple optimization algorithm. Note that such
direct combined design methodology is introduced to the control theory for the first time.

6.3.3 Main results: a new design methodology

Now, after preparing the necessary background we can present a new continuous sliding mode
control design methodology for input-delayed systems with known or unknown but bounded
delays.

Again consider single-input delayed system (6.3.1) with known /4 = const > 0 or unknown but

bounded delay 0 < 2 </ and initial condition u(t) = @¢(t) for —h <t <0, where ¢(¢) is a

known scalar function.
Select a Zhou and Fisher type of continuous sliding mode controller as

u(t) = —ks(t) (6.3.42)

where k is a constant gain scalar to be designed. Assume that linear sliding mode is defined in
n-dimensional state space by the following linear function:

s(t) =" x(t) (6.3.43)

where ¢ is a design n-vector to be selected. This linear control law must satisfy the sliding
condition.
Using the Lagrange mean value theorem (6.3.41) let us represent input-delayed system (6.3.1)
as follows
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x(t) = Ax(t) + blu(t) — hi(6)] = Ax(t) — bks(t) — bhii(0) = Ax(t) — bks(t) + kbhs(6)
= Ax(t) — bks(t) + kbhc" x(8) = Ax(t) — bks(t) + kbhc” [ Ax(6) — bks(0 — h)] (6.3.44)
= Ax(t) — bks(t) + kbhe” Ax(0) — k* hbe " bs(0 — h)]

From (44) it is obvious that full delay term h already appears in transformed system. Now, our
goal is to organize an asymptotically stable linear sliding mode on defined hyper plane s(#) =0
(6.3.43). Stable sliding mode conditions are formulated in the following theorem. But, we need
to make the following assumption.

Assumption 1: Time-delay parameter 6 is a time-dependent function and norm-bounded such
that

0<1-n<6(t)<n<l (6.3.45)

where 7 is a scalar.

Note that assumption similar to (3.45) is used by many authors, for example, by Ikeda and
Ashida [122], Su and Chu [123], Su, Ji and Chu [124], Wu, He, She and Liu [125], Kim [126]
etc.

Theorem 9: Suppose that Assumption 1 holds. Then the transformed time-delay system
(6.3.44) driven by continuous sliding mode controller (6.3.42), (6.3.43), is delay-dependent
asymptotically stable relative to the manifold s(z) =0 (6.3.43), if there are design parameters

k, c, a, B, y and i such that the following sliding conditions are satisfied:

A—ke"b+ B+y %kthb/I —%kzh(ch)2 0
1
—khe"bA —(1- 0 0
H=| 2 an ~(=mp <0 (6.3.46)
—%kzh(ch)z 0 -a(l-n) 0
i 0 0 0 -7 |
or
A+p+y
k>2"L 7 6.3.47
T} ( )
1-7
a<—Lp (6.3.48)
n
cl'A=AcT (6.3.49)

where A is any left or right eigenvalue of matrix A; «, f and y are some positive adjustable
scalars.

Proof: Choose an augmented Lyapunov-Krasovskii functionals as

9 t t
V(s5(2), 5(8), (6 —h), s(t—h)) = %sz () +a Isz (O)dE + ﬂjsz (E)dE+y I s2(@)dg  (6.3.50)
0-h g

t—h
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where a, f and y are some positive adjustable scalars.

The time derivative of (6.3.50) along the state trajectory of (6.3.44) can be calculated as
follows:

V =s()s(t)+0()a(s*(0)— s2(0—h)) + Bs* () - O(t) fs*(0) + ys>(t) — ys>(t — h)

= s(O)[c" Ax(t) — ke bs(t) + kheT be! Ax(0) — k2h(cTb)2s(6—h)]+(B+7)s(t)— ys>(t—h)

(6.3.51)
+ab(t)s*(0)—a(0)0(t)s* (0 —h) - BO(t)s*(0)

Since

0(t)s*(0) < ns*(6) (6.3.52)

—-0(0)s>(0-h) < —(1-17)s*(0—h) (6.3.53)

and (6.3.49) hold, then (6.3.51) reduces to
V < As2(t)—kcTbs? (£) + khcT b As(0)s(1) — k2h(cTB)2s(6 - h)s(t) + (B +7)s>(¢)
—ys*(0-h)+nas*(0)-(1-mas*(@—h)—(1-n)Bs* (@) —ys*(t—h)
= (A—kcTb+ B+ )52 (1) + khc"bAs(0)s(t) — k2h(cTb) s(t)s(0— h) + (na — (1—1) B)s(0)

—(=mas*(@—h)—ys*(t—h)

o T A—ke"b+ B+ %kthb/l —%kzh(ch)z 0 | w0
_ s6) %kthM an—(-mp 0 o] 5@
OB kb 0 -y 0 | [S0D
se-my | L0 0 0 7 sy |
= " () Hy(t) < = Ao (H)|y(0)]" <0 (6.3.54)

where y(O)=[ s(t)  s(8) s@-h) st-h)] .

Note that matrix H has its own quadratic structure H = MH,M "

where
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A+p+y— kc'b 0 0 0
0 an—(1-mp 0 0
H, = ,
0 0 -a(l-n) 0
0 0 0 y
[ 0.5khAc"b 0.5k>h(c"b)* 0
an—(1-mp a(l-n)
M=| 0 1 0 0
0 0 1 0
| 0 0 0 1

Since M is a nonsingular and H, <0 because its leading principle elements are always negative
then H <0 . Therefore, condition (6.3.54) means that manifold s(#) =0 is reached in finite time
and the reaching time can be evaluated approximately as follows:

(6.3.55)

Thus, the time-delay system (44) with known delay is delay-dependent asymptotically stable.
If we consider a case where the delay term is unknown but bounded 0 < 4 < & then we can
solve the following convex optimization problem:
OP: maximize h
Subject to conditions (6.3.46) (6.3.56)
This ends the proof of Theorem 9.
Let us consider a simple analytical example to illustrate our design approach.

Example 9: Again consider the simple input-delayed system (6.3.13). Define a continuous
sliding mode controller as follows.

u(t) = —ks(?) (6.3.57)
s(t) = ex(t) (6.3.58)
where k and ¢ are the design scalars.

Substituting (41) with (57) and (58) into (13) we have
(1) = —ax(t) + bu(t — h) = —ax(t) + bu(t) — bhi(6) =—ax(t) —bks(t)+ bhks(6)
= —ax()— bks(t) + bhkex(0) =—ax(t)—bks(t) — abhkex(0) - b*hkcs(6— h) (6.3.59)

= —ax(t) —bks(t)— abhks(0) —b* hk*cs(6 — h)
Then the time-derivative of (6.3.50) along (6.3.59) is given by

V =55+ 00)a] s*(©0)~ 5> (0 - h) |+ Bs* ()~ 0(0) s> (0) + ys* (6) — s> (t— h)
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= s(t)[-acx(t) — bkes(t) — abchks(0) — b c*his(0 — h)]+ 0(t)as* (6)

—0()as* (6 —h)+ Bs> (1) —0(t) Bs>(0) + ys*(t) — s> (t — h)

< (—a —bck + f+ 7)s2 (t)—abchks(t)s(0) —b*c*hk*s(t)s(6 — h)

(6.3.60)
+(an+pA-n)s* (@) —a(l-n)s*(@—h)~ys*(t-h)
sty |- . | A T os@)
—bck—a+p+y -Eabchk —Ebzczhk2 0
s(6 17
_ ©) -%abchk an—(-mp 0 ol 5@
S(H_h) _%bZCth2 0 —0((1—77) 0 S(e_h)
se-m | L0 0 0 7 1 sa-n |
= YT (VHY(E) < =R D0 <0
or the following Sylvester’s conditions hold:
|H1I=—bck—a+ﬂ+7/<0 or bck>—-a+ f+y with f+y>0 (6.3.61)
|H > |=[-bck —a+ B +y]an+ pa- n)]—%(abchk)z <0 (6.3.62)

| H3|<0 and | H4|<0 respectively,

then, time-delay system (6.3.59) with known h is delay-dependent asymptotically stable relative
to the s(¢) =0.

If we consider a case where h is unknown but bounded 0 < /4 < / then the maximum upper
bound can be calculated as follows.

From min | H, |< 0 (6.3.62) we compute

6‘52‘

s —abclan + (- n)]—%(abch)zk =0 (6.3.63)
Hence, /= \/ “2belan+p 2(1_’7)] (6.3.64)
k(abc)

with an+B(1-n)<0, be>0.

Thus, time-delay system (6.3.59) with unknown but bounded delay term is robustly
asymptotically stable relative to the s(¢) =0 with upper bound % (6.3.64).

Design Example 10: Helicopter hover control
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The linearized longitudinal motion of helicopter near hover (see Fig. 6.3.2) can be modeled by
the normalized linear third order system [127] with pilot time-delay h [128] as follows:

9| [-04 0 -0.01]¢] [6.3
Ol=| 1 0 0 | &+ 0|5¢t-h) (6.3.65)
| |-1.4 98 —0.02{u| (9.8

where

g is the pitch rate,

6 is the pitch angle of fuselage,

u is the horizontal velocity (standard aircraft notation),

& 1is the rotor tilt angle (control variable),

h is the pilot’s effective time- delay, for example, #=0.43 s.

Continuous sliding mode controller is formed as (6.3.42):

u(t)=—ks(t) (6.3.66)
where & is a scalar to be designed by (6.3.47) and sliding function is defined as (6.3.43):
s(t)=cq+c,0+cu (6.3.67)

where ¢|,c,,c; are design parameters to be determined.

Design procedure can be fulfilled with MATLAB programming (which is given in Al) by the
following steps:
-0.6565

o ©eig(A)=| 0.1183+0.3678i
0.1183 - 0.3678i
A is unstable with one pear conjugate complex-roots.

e Calculate matrix (46):

-0.0313 0.0177 -0.0034 0 -0.3000
0.0177 -0.1640 0 0 ) -0.1821

= , eig(H) =
-0.0034 0 -0.1820 0 -0.1663
0 0 0 -0.3000 -0.0289

H is a negative definite matrix.

cl =-0.0389
c2 = 0.0592
c3=-0.9975
k= 0.0125

h= 0.4300
eta= 0.0900
alpha = 0.2000
beta =0.0200
gamma = 0.3000
hmax =1.714
c¢Tb =-10.0204
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Thus all design parameters are calculated. Maximum upper bound of time delay, hmax = 1.714,
is found from condition (6.3.46). A block diagram of continuous sliding mode controller for
helicopter input delayed system (6.3.1), (6.3.42), (6.3.43) or (6.3.65), (6.3.66), (6.3.67) is
shown in Fig. 6.3.3. This system is simulated by using MATLAB-Simulink. Continuous sliding
mode controller is performed by linear Simulink blocks s(¢) and u(¢) . Note that, these are not

variable structure blocks, but linear blocks satisfying the sliding condition (6.3.54). Helicopter
control performances are shown in Fig. 6.3.4, from which can be seen that unstable helicopter
dynamics is successfully stabilized by using linear sliding mode controller. For example,
settling time is about 20 sec. Reaching time is also about 20 sec. Therefore, simulation results
confirmed the usefulness of the developed design methodology.

Example 11: Helicopter Smith predictor control

Now let us Smith predictor control (see Fig. 6.3.1) example for the same unstable helicopter
dynamics (6.3.65). Multivariable block diagram is shown in Fig. 6.3.5. Helicopter control
system (6.3.2) and (6.3.3) with parameters (6.3.65) is simulated. Controller (6.3.3) gain
parameter is calculated by using MATLAB programming command, which is given in A2:
Design parameters are calculated as follow:

el =-0.0389
e2=10.0592
e3 =-0.9975
P=
-0.1555
-0.2369
-3.9899
K=
0.6279 0.2531 0.0007

Simulation results are presented in Fig. 6.3.6. From which can be seen that Smith Predictor
control, also, successfully stabilizes the unstable helicopter dynamics, because the model
parameters are known.

6.3.4 Conclusions

The Smith predictor method, reduction method and reduction method combined with classical
discontinuous sliding mode control approaches are discussed and presented as some
preliminary results. A new continuous sliding mode control design methodology based on
Lagrange mean value theorem is proposed for stabilization of single input delayed systems. The
Lagrange mean value theorem as a basic theorem of calculus is used for the design of linear
sliding mode time-delay controller for the first time. This controller satisfies the sliding
condition using a Zhou and Fisher type continuous control law eliminating the chattering effect.
The constructive delay-dependent asymptotically stable sliding conditions are obtained by
using the augmented Lyapunov-Krasovskii functionals and formulated in terms of simple
(4 x4)-matrix inequality with scalar elements. Developed design approach can be extended to
robust stabilization of sliding system with unknown but bounded input delay. These
contributions are the main results of the paper. Four analytical and numerical design examples
are considered to illustrate the various design approaches. The maximum upper bounds of delay
size are found by using simple optimization algorithms. Helicopter hover control is considered
as fifth design example for illustrating the performances of smooth sliding mode approach and
Smith predictor control. Unstable helicopter dynamics are successfully stabilized by using
linear sliding mode time-delay controller. For example, settling time is about 20 sec. Smith
predictor control result, also, is very well, because for considered example model parameters
are known. Therefore, simulation results confirmed the effectiveness of the proposed design
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methodology. Apparently, the proposed method has a great potential in design of time-delayed
controllers.

Al
clear; clc;
A = [-0.4 0 -0.01; 1 O O;
-1.4 9.8 -0.02];
[V.D] = eig(A);
D diag(D)
% selection according to case a):
lamda L = D(1)

cl = V(1,1)

c2 = V(2,1

c3 = V(3,1

h = 0.43

eta = 0.09

alpha = 0.2

beta = 0.2

gamma = 0.3

cT = |[clc2 c3];

b = [6-3; 0; 9.8];

k = 0.8*(lamda_L+beta+tgamma)/(c_T*b)
h_max = 1.714 % delay

CcTb =c T*b

hil = lamda L-k*c_ T*b+beta+gamma
h22 = alpha*eta-(1-eta)*beta

h33 =-alpha*(1-eta)

h44 = -gamma

H1 = [ lamda L-k*c_T*b+beta+gamma;
0.5*k*h*c_T*b*lamda L ;
-0.5*k"2*h*(c_T*b)"2; 0];

H2 = [0.5*k*h*c_T*b*lamda_L ;
alpha*eta-(l1-eta)*beta; 0; 0];

H3 = [-0.5*k"2*h*(c_T*b)"2; O;
-alpha*(1-eta); 0];

H4 = [0; O; O; -gamma];

H = [H1 H2 H3 H4];

eig H = eig(H)

A2

A=[-0.4 0 -0.01; 1 0 O0; -1.4 9.8 -0.02];
b=[6.3; 0; 9.8];

[V.Dl=eig(A);

el=V(1,1);

e2=V(2,1);

e3=V(3,1);

P = [4*el; -4*e2; 4%*e3];

K = place(A,b,P)
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6.4 Robust stabilization of uncertain input-delayed systems by a new modified reduction
method: an easy way

An easy way to robust stabilization of multivariable input-delayed systems with unmatched
parameter uncertainties is considered. A new modified reduction method is developed to overcome
some of inherent issues in the usage of the conventional reduction method. Then, the transformed
delay-free system can be stabilized by proposed linear controller, which is designed by using only
conventional Lyapunov V-function method. Global stability conditions are formulated in terms of
algebraic Riccati equations and some matrix inequalities. For the comparison analysis, a simple
memoryless linear controller for robust stabilization of original time-delay systems with unmatched
parameter uncertainties is also designed by using a conventional Lyapunov-Krasovskii V-
functional method. This analysis shows that the stability results of both approaches are coordinated.
Two numerical examples with simulation results are given which show the effectiveness of our
design approach.

6.4.1 Introduction

It is well known that major engineering systems for example, conventional ail-chemical process
control, engine control and human-pilot control system contain a time-delay and parameter
uncertainties which induced several known issues in design of robust systems. Therefore, the
problem of robust stabilization of time-delay systems with parameter uncertainties still has received
considerable attention by control researches.

An easy way of dealing input-delayed systems is to reduce them into delay-free ordinary systems
by using well known reduction method (Kwon and Pearson, 1980) [183]. Then, the transformed
linear delay-free systems can be analyzed by using a conventional Lyapunov V-function method
and designed for example by pole-placement. This is an advantage of the reduction method.
Remember that, unstable system also can be stabilized by reduction method. However, the
reduction method suffers from a weakness that the complete reduction to a delay-free system is
only possible with an exact model parameters of the system. Hence, parameter uncertainties may
sometimes cause problems in using the reduction method [184].

Robust stabilization problem for multiple input-delayed system with matched parameter
uncertainties using the reduction method is considered by Moon, Park and Kwon (2001) [184].
However, an original time-delay system can not be completely reduced to a delay-free system due
to existence of parameter uncertainties and some delay term. For this reason especially selected two
Lyapunov-Krasovskii functionals are introduced to be considered. Then, global asymptotical
stability conditions for transformed mixed time-delay system are formulated in terms of LMI’s of
new state variables z(t) and z(t-h) which can be solved using convex optimization methods. Clearly
that this combined way is a long way, at least it is not an easy way, whereas Lyapunov-Krasovskii
functional method itself is another useful way to robust stabilization of original time-delay systems
with parameter uncertainties [185], [186], [187]. Some linear memoryless controllers for
stabilization of time-delay systems with matched parameter uncertainties are designed by Choi and
Chung (1995) [188], Kim, Jeung and Park (1996) [189], Su, Chu and Wang (1998) [190],
Mahmoud and Muthairi (1999) [191] etc. using Lyapunov Krasovskii V-function method.
Memoryless controllers have merit that they are easy to implement. In general, an overview of
some recent advances and open problems in time-delay systems are given by Richard (2003) [192]
and [193].
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In this section, an easy way to robust stabilization of multivariable input-delayed systems with
unmatched parameter uncertainties is considered. A new modified reduction method is developed
to overcome some of inherent issues in the usage of the conventional reduction method. Then, the
transformed delay-free system can be stabilized by proposed linear controller, which is designed
using only conventional Lyapunov V-function method. Global stability conditions are formulated
in terms of algebraic Riccati equations and some matrix inequalities. For the comparison analysis, a
simple memoryless linear controller for robust stabilization of original time-delay systems with
unmatched parameter uncertainties is also designed by using a conventional Lyapunov-Krasovskii
V-functional method.

This analysis shows that the stability results of both approaches are coordinated. Two numerical
examples with simulation results are given which show the effectiveness of our design approach.

6.4.2 Preliminaries and problem statement

For better understanding the reduction method first let us consider a nominal input-delay system
described by the following equation:

2(t) = Ax(t) + Byu(t) + Bu(t — h) (6.4.1)

with initial conditions x(0)=x, and u(¢f)=¢() for -h<t<0, A and B are nominal constant

matrices, £ >0 is a constant time-delay. The conventional reduction method proposed by Kwon
and Pearson (1980) [183] suggests the following linear state transformation

2(t) = x(t) + j e 0B 1(0)do (6.4.2)

t—h

Then, input-delayed system (6.4.1) can be transformed to following delay-free ordinary system:

o d [ ae-n-o)
2(6) = (1) +Et jhe Bu(6)de

t
= Ax(t)+ Bu(t)+ Bu(t—h)+ e O Bu(@)[_, +4 j e B u(0)d
t—h

t
= Ax(t)+ Byu(t)+ Bu(t—h)+ e’AhBlu(t) —Bu(t—h)+ A4 j eA(t’h’a)Blu(H)dH

t=h
= Az(t)+ (B, + e " B))u(t) (6.4.3)
or Zz(t) = Az(t)+ Bu(t) (6.4.4)
where
B=B,+e "B, (6.4.5)
Then a linear controller
u(t)=—-Kz(t) (6.4.6)
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can be used for stabilization of complete delay-free system (6.4.3). The gain matrix K can be freely
chosen using any design method for example pole placement. This approach is extended for
stabilization of input-delayed system with matched parameter uncertainties by Moon, Park and
Kwon, (2001) [184]. However, as mentioned in Section 6.4.1 the transformed system again is
obtained in terms of old and new state variables x(t), z(t), because of existence of parameter
uncertainties. Moreover, the transformed system is a time-delay system. For avoiding these
difficulties two special selected Lyapunov-Krasovskii functional combined with inner-product
inequality and integral inner product inequality (Noldus, 1985) [194] are used. The stability results
are formulated in terms of LMI’s of new state variables z(t), z(t-h). This approach is a long way.
Thus, a question arises that whether exist a new modified state transformation similar to (6.4.2)
which can be reduced the original input-delayed system with parameter uncertainties to complete
delay-free system. A main goal of this paper is to find a new linear state transformation for above-
mentioned class of systems after that a robust linear controller can be designed by using easy and
convenient methods.

6.4.3 A modified reduction method

Consider the following input-delayed system with parameter uncertainties

x(t) = (A+AA(0))x(1)+ Byu(t)+ Bu(t — h) (6.4.7)

where in addition to (1) A4(o) is a parameter uncertainty. It is assumed that

max [AA(0)] = maxy Ay, (A4 (0)A4(0)) = (6.4.8)

Our goal is to design a linear controller such that it robustly stabilizes the transformed input-
delayed system for all admissible uncertainties.
Let us consider a modified linear state transformation

t
z(t) = x(t) + j LA (@]t )e—h-0)
t—h

Bu(6)do (6.4.9)

which is the key point of this method. Then, in according to (6.4.3), the input-delayed system
(6.4.7) can be transformed to following mixed delay-free system:

2(t) = (A+ AA(0))x(0)+ Byu(t) + Bu(t — h)+ A== y (@)

t
+(A+al,) j e Araln=h=0)B 1, (9)d O
t—h
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= (A+AA(G))x(t)+ Byu(t) + Bu(t — ) + e 4+ Byy(1)

t
~Bu(t—h)+(4+al,) j e Arali=h=0) B 1,(9)d 6

t—h

t
= A| x(t)+ [ e N0 Bu(G)do +[Bo+e-<A+“fn>hBl}u(t)
t—h

t
+AA(o)x(t)+a j e Aral)=h=0 B 1,(9)d
t—h

2(t) = Az(t) + Bu(t) + AA(o)x(t) + j Al -0 B (9)d 0 (6.4.10)

—h

where B=B, + e_(A“"'")hB1

Let us select the linear controller as follows:
u(t) = —kB" Pz(t) (6.4.11)

where P is a symmetric positive-definite matrix, k£ is a scalar gain to be selected.
The stabilization conditions are presented in the following theorem.

Theorem 10: The mixed delay-free system (6.4.10) driven by linear controller (6.4.11) is robustly
globally asymptotically stable, if there exist positive definite matrices P, Q, R and a scalar gain k
such that the following algebraic Riccati equation has a positive definite solution

A"P+PA-2kPBBTP=-0, 0=0" >0 (6.4.12a)
and holds Q-3aA,,, (P),=R, R=R" >0 (6.4.12b)
or collecting in one equation

A" P+ PA-2kPBB" P+3al,_, (P)I, =R, (6.4.12¢)

Proof: Choose a Lyapunov function candidate as follows
V(z(t)=z" ()P=(1) (6.4.13)

where P is a symmetric positive definite matrix.
The time derivative of (6.4.13) along (6.4.10) is given by

V=z"(t)(A" P+ PA)z(t) + 22" (1)P[AA(0)x(1) + max|AA(o)| je“*“"' =0 B w(0)d o]

t—h

—2kz" (£)PBB” Pz(t) = z” (1)(A" P+ PA—2kPBB” P)z(t)+2z" (t)P Ad(c)x(¢) (6.4.14)
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t
+22" (£)Pmax A4 (o) j A =0 B 1,(9)d
t—h

Since the following very well known Schwarz’s inequalities hold

227 ()P A(0)x(1) < 2 A (PYmax[A4 (o) ()] [x()| (6.4.15)

t
22" (t)Pmax|[Ad(o)] j At -0 B 1y (0)d O
t—h

<2 (P max [ A4 (o) |2(0)]

max

t
J‘ e A+al,)(t=h-0) Blu(a)dHH (6.4.16)

t—h
Then, using notation (6.4.12a) and rearranging (6.4.14) we have

V(z(t)) < —2" (1)Qz(t) + 24, (P) max |a4(o)|[|z@)] <)

(6.4.17)
2 (PYmax| (@) |20 je“‘*“’”“””B]u(e)dHH
t—h

Since 2ab < a* +b* (6.4.18)
where a and b are some scalars.
Therefore
2|z0)||x]| |20 + O = 2" @)z(e)+xT (1)x(0) (6.4.19)

t
2[00 j A= B 1 (9)dB| < 27 (1)z(t)

t—h

t ey
+[ I e(A+a1n)(th0)Blu(0)d9] [ J' e(A+aIn)(t7h76)Blu(9)d0 (6.4.20)
t t

Zh Zh
Then,

V(z(0) < =2" (002(8) + A (P)] 27 (0)2(0) + X" (1)x(1) |+ @y (P)] 27 (0)2(0)

t r t
+|: I e(A+aI,, )(thH)Blu(a)d0:| |: j e(A+(Z[n )(th&)Blu(e)dg:“
t—h t—h
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=—2" (1)02(1) + 200 (P)2" (1) 2(1) + Ay (P) [xr (H)x(?)
(6.4.21)

t e
" J‘e(A+a1,,)(t—h—€)Blu(0)d0:| l:J’ e(A+a1,,)(t—h—e)Blu((g)dg:H
—h t—h

Moreover,
T T T
vivew w<(v+w) (v+w) for v+w=#0

where v and w are some vectors.

Therefore,

t T t
xT(t)x(z){ j e(“‘”’”)(’"h"g)B]u(H)dH:l { j e‘““’”)("h"g)Blu(H)dH}
t

t—h ~h

s{x(m j e(A“’”")("h"g)B]u(H)dH} {x(m j e(“”"")("h‘g)Blu(H)dH} = (M)z(r)  (6.4.23)

t—h —h
Then, (6.4.21) reduces to:

V(2(1)) < 2" ()02(1) + 205 (P)2" (1)2(0) + A (P)2" (1)2(2)
(6.4.24)
=—2" ()] Q=30 (P) | 2(t) =—2" ()R z(1) < O
if satisfied (6.4.12a) and (6.4.12b) or (6.4.12c).
Therefore, mixed delay-free system (6.4.10), (6.4.11) is robustly globally asymptotically stable.

Theorem 10 is proved. Now, let us consider an alternative proof of Theorem 10.
Second proof: From (6.4.9):

Bu(0)d6 = z(t) - x(¢) (6.4.25)

j- (A+max|Ad(@)|1, )i~h-0)
e o
h

Then, (14) can be rewritten as follows:

V==z2"(0)0z(t) + 22" ()P A(0)x(1) + 22" ()P max|[Ad(c)|(z(F) — x(1)) (6.4.26)

< =27 ()Q2(t) + 20y (P) | 2(0)| | x(0)]| + 222" (1) P(2(2) - x(2))

Since,

2" (OP (2= %) < A P [|2] =[] < A P2}z = ] (6.4.27)
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because [195]:  0< |||~ <[l — 4| (6.4.28)

Then, (26) reduces to:

V <=2"()02(1) + 20 (P) 20| X(0)]| + 200 (P)||z(t)||2 =200 (P)||20)]| (@)

(6.4.29)
=—z'(1) [Q 204, (P)I, ] z(t) =—z" (HR,z(t) <0
where
R,=0-2aA,,(P)I, and R,>R >0 (6.4.30)

Hence system (6.4.10), (6.4.11) is robustly globally asymptotically stable. Therefore, an easy way
is fixed soundly because the results of two different ways coincide.

6.4.4 Comparison analysis: Lyapunov-Krasovskii functional approach

New, for the comparison analysis let us consider the robust memoryless stabilization of the original
input-delayed system (6.4.7) by using conventional Lyapunov-Krasovskii functional method. For
which let us select a linear controller as

u(t)—xB] Px(t) (6.4.31)

Then, robust stability conditions can be presented as follows.

Theorem 11: The input-delayed system (6.4.7) with unmatched parameter perturbations driven by
memoryless linear controller (6.4.31) is robustly globally asymptotically stable, if the following
conditions are satisfied:

A" P+ PA-2xPB,B} P+2al,, (P)I,+R=-R, (6.4.32)
R PB,BI'P
- P Ol P (6.4.33a)
kPB,B, P R
or its Schur complement
R, —KZPBIBOTPR_IPBIBOTP >0 (6.4.33b)

where P, R and R; are positive definite symmetric matrices.

Proof: Choose a Lyapunov-Krasovskii functional candidate as follows:

V(x(t)) =x" (£)Px(t) + j. xT (O)Rx(0)d o (6.4.34)

t—h

where P and R are positive definite symmetric matrices to be selected.
Then, the time-derivative of (6.4.34) along (6.4.7), (6.4.31) can be calculated as follows:

V(x(t),x(t —h)) = xT (£)(AT P+ PA)x(t) - 2kx" () PB, Bl Px(t)+2x" (1) PAA(c)x(¢)
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—2kx" (t)PB B} Px(t —h)+x" (£)Rx(t)— x" (t — h) Rx(¢ — ) (6.4.35)
Since,
2xT () PAA(0)x(t) < 2aA (P)Hx(t)”z =204, (P)xT (£)x(2) (6.4.36)
Then,

V(x(t),x(t—h)) < x" (t)(A" P+ PA—-2kPB,B! P+2a/,

max

(P)L, + R)x(?)

—2kx" (t)PB,By Px(t—h)—x" (t — h)Rx(t — h)

x(2)
x(t—h)

" R «xPBB’P

kPB,BIP R

X
| x(t—h) |

(6.4.37)

[ x0T, x0
~ T xe-h)| H l:x(t—h)}d)

if the conditions (6.4.32) and (6.4.33) are satisfied.
Therefore, original time-delay system (6.4.7), (6.4.31) is robustly globally asymptotically stable.
6.4.5 Example 12

Consider the following input-delayed system with parameters given by (Cheres, Palmer and
Gutman, 1990) [196].

x(£) = (A+A4)x(1)+ Bu(t—0.2) (6.4.38)

Where

{—1.25 —3}’ {Vsint O:Is | L} where |vsing| < p,

Design procedure using an easy way for transformed system (6.4.10) can be performed as fallows:

e Solve algebraic Riccati equation (6.4.12a) and check condition (6.4.12b) by the following
program written in Matlab:

[ ]

clear

clc

v=0.21

t=pi/2

A=[0 1;-1.25 -3]
deltaA=[0 0; v*sin(t) 0]
ro=v*sin(t)

Q=[1 0; 0 1]
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h=0.2

In=Q

alfa=ro

k=5

B1=[0;1];
B=expm(-(A+alfa*In)*h)*B1
B2=2*k*B*B*"
P=ARE(A,B2,0Q);
Peig=eig(P)
lamda_max=max(Peig)
R1=1-3*alfa*lamda_max

where

v=0.2100

t=1.5708

0 1.0000 0 0
A_{—IQSOO —3.0000}’ A‘4{0.2100 o}’

p=0.2100

it

h=0.2000

10
mo 1

a=0.2100

k=5

B = 0] g_[-0.2606] B, - 0.6.791 -44594)
1 1.7112 —4.4594 29.2823

eig(P)=1.5813, 0.1119

A (P)=1.5813

0.1456 0.0038 0
T = =
BP _{0.2309}’ A { 0 0.0038}0’
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which is a symmetric positive definite matrix. Thus, the design parameters are obtained.

6.4.6 Example 13

Again consider input-delayed system (6.4.38) stabilizing by controller (6.4.31) with parameters
given in Example 12. Design procedure using Lyapunov-Krasovskii functional method can be
performed by following steps:

e Solve algebraic Riccati equation (6.4.32) and check condition (6.4.33) by the following
program written in Matlab:

clear

clc

v=0.21

t=pi/2

A=[0 1;-1.25 -3]
deltaA=[0 0; v*sin(t) 0]
ro=v*sin(t)

Q=[1 0; 0 1]

h=0.2

In=Q

alfa=ro

k=6

B1=[0;1]
B=expm(-(A+alfa*In)*h)*B1
Aeig=eig(A)

Bo=[0; O]

B3=2*k*Bo*Bo "
P=ARE(A,B3,Q)
Peig=eig(P)
lamda_max=max(PeiQ)
Ql=In
RIine=Ql1-2*alfa*lamda_max*Q1
R=Rline/2

R3=Rline-R

where
y=0.2100

t=1.5708

0 1.0000 0 0
4= 12500 —3.0000}’ AA{o.zloo 0}

£=0.2100
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ath

h=0.2000

10
"o

a=0.2100

_[-0.2606
17112

. —0.5000
eig(4) :{—2 5000}

0 00 1.5750 0.4000
0 M ; {0 0}’ {0.4000 0.3000}

eig(P)=1.6901, 0.1849

A =1.6901
10 = 10.2902 0 0.1451 0

= R: R:R = .

< {0 1}’ { 0 0.2902}’ 3 { 0 0.1451}

Note that, the matrices P, R and Rj are positive definite. But, varying of parameter k does not
influence the solution of (6.4.32), because By is zero vector in this example.

6.4.7 Simulation results

A new configuration of modified reduction scheme is shown in Fig. 6.4.1. Time-delay system
(6.4.7), (6.4.10), (6.4.25), (6.4.11) with parameters of system (6.4.38) is simulated. Time response
of original open-loop system is shown in Fig. 6.4.2, time response of transformed closed-loop
system is shown in Fig. 6.4.3 and control function is shown in Fig. 6.4.4. Closed-loop system is
stable. Block diagram of original closed-loop input-delayed system (6.4.7), (6.4.31) is shown in
Fig. 6.4.5. Fig. 6.4.6 and Fig. 6.4.7 show that the system is stable. These results are coordinated
very well. Simulation results show the effectiveness of our design approach.
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6.4.8 Conclusions

An easy way to robust stabilization of multivariable input-delayed systems with unmatched
parameter uncertainties is considered. A new modified reduction method is developed to overcome
some of inherent issues in the usage of the conventional reduction method. Then, the transformed
delay-free system can be stabilized by proposed linear controller, which is designed using only
conventional Lyapunov V-function method. Global stability conditions are formulated in terms of
algebraic Riccati equations and some matrix inequalities. For the comparison analysis, a simple
memoryless linear controller for robust stabilization of original time-delay systems with unmatched
parameter uncertainties is also designed by using a conventional Lyapunov-Krasovskii V-
functional method. This analysis shows that the stability results of both approaches are coordinated.
Two numerical examples with simulation results are given which show the effectiveness of our

design approach.

Time-Delay B

Step

In

Transformed closed-laop

system

Original apen-loop system

A
m|<—@]q—
k B'F

Figure 6.4.1 A new configuration of modified reduction scheme
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